Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A board of length 2d=6mrests on a cylinder (the “pivot”). A ball of mass 5kgis placed on the end of the board. Figure 11.104 shows the objects at a particular instant. (a) On a free-body diagram, show the forces acting on the ball + board system, in their correct locations. (b) Take the point at which the board touches the cylinder as location A. What is the magnitude of the torque on the system of (ball + board) about locationA?(c) Which of the following statements are correct? (1) Because there is a torque, the angular momentum of the system will change in the next tenth of a second. (2) The forces balances, so the angular momentum of the system about location Awill not change. (3) The forces by the cylinder on the board contributes nothing to the torque about the location A.

Short Answer

Expert verified

The magnitude of the torque acting on the system about the pointAis147N.m.

Step by step solution

01

Definition of Torque.

Torque is the measure of the force that can cause an object to rotate about an axis. Force is what causes an object to accelerate in linear kinematics. Similarly, torque is what causes an angular acceleration. Hence, torque can be defined as the rotational equivalent of linear force.

02

Diagram shows the forces acting on a ball – board system.

(a)The point at which the board touches the cylinder will be at rest. Due to the gravitational force on the ball there is a torque that rotates the ball-board system in anti-clock wise direction.

The following figure represents the free body diagram of the ball-board system.

In the figure, mis mass of the ball andg is acceleration due to gravity and localid="1668602571675" mgrepresents the gravitational force on the ball which is downward direction. The point at which the board touches the cylinder will be stationary because the normal reaction force and gravitational forceMgon the ball-board system are balanced. Thus, there will be net force acting on the system which causes rotation of the system.

03

Find the magnitude of the torque acting on the system.

(b)The expression for torque acting on the ball board system about the point Ais given as follows:

τ=r×F

Here, represents the perpendicular distance of the ball from point Aand Fis the applied force.

The force is applied perpendicular to the board thus the torque is maximum and it is directed along the negative localid="1668602702078" y-axis.

ReplaceFby then the magnitude of the torque is given as follows:

τ=r(mg)

Substitute 3mfor localid="1668602640934" r,5kgfor mand 9.8m/s2for g.

τ=(3m)(5kg)(9.8m/s2)=147N.m

Therefore, the magnitude of the torque acting on the system about the pointAis147N.m.

04

Find the net torque acting on the system.

(c) The net torque acting on the system is non zero and hence there will be a change in the angular momentum of the system and as discussed in part b, there is no effect of force of cylinder on the board in contribution of torque of the system about pointA.

Even the forces are balanced at pointA there is net downward force acting on the system, then the torque rotates the system and hence there will be a change in the angular momentum of the system.

Hence, the statements (1) and (3) are correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A comet orbits the sun (figure). When it is at location 1 it is a distance d1from the sun. When the comet is at location 2, it is a distanced2from the sun, and has magnitude of momentump2. (a) when the comet is at location 1, what is the direction of LA? (b) when the comet is at location 1, what is magnitude of LA? (c) When the comet is at location 2, what is the direction of LA? (d) when the comet is at location 2, what is the magnitude ofLA ? Later we’ll see that the angular momentum principle tells us that the angular momentum at location 1 must be equal to the angular momentum at location 2.

At a particular instant the location of an object relative to location \(A\) is given by the vector \({\overrightarrow r _A} = \left\langle {6,6,0} \right\rangle {\rm{m}}\). At this instant the momentum of the object is \(\overrightarrow p = \left\langle { - 11,13,0} \right\rangle {\rm{kg}} \cdot {\rm{m}}/{\rm{s}}.\) What is the angular momentum of the object about location \(A\)?

A uniform-density wheel of mass 6 kg and radius 0.3 m rotates on a low-friction axle. Starting from rest, a string wrapped around the edge exerts a constant force of15Nfor0.6s(a) what is the final angular speed? (b) what is the average angular speed? (c) Through how big an angle did the wheel turn? (d) How much string come off the wheel?

Two people of different masses sit on a seesaw (Figure 11.103). M1,the mass of personis90kg,M2is42kg,d1=0.8m,andd2=1.3m.The people are initially at rest. The mass of the board is negligible.

(a) What are the magnitude and direction of the torque about the pivot due to the gravitational force on person(b) What are the magnitude and direction of the torque about the pivot due to the gravitational force on person(c) Since at this instant the linear momentum of the system may be changing, we don’t known the magnitude of the “normal” force exerted by the pivot. Nonetheless, it is possible to calculate the torque due to this force. What are the magnitude and direction of the torque about the pivot due to the force exerted by the pivot on the board? (d) What are the magnitude and direction of the net torque on the system (board + people)? (e) Because of this net torque, what will happen? (A) The seesaw will begin to rotate clockwise. (B) The seesaw will begin to rotate counterclockwise. (C) The seesaw will not move. (f) Person 2 moves to a new position, in which the magnitude of the net torque about the pivot is now0,and the seesaw is balanced. What is the new value ofd2in this situation?

A small rock passes a massive star, following the path shown in red on the diagram. When the rock is a distance 4.5×1013m(indicatedas in figure) from the center of the star, the magnitudeof its momentum is1.35×1017kg·m/sand the angle is126°12. At a later time, when the rock is a distance d2=1.3×1013mfrom the center of the star, it is heading in the -ydirection. There are no other massive objects nearby. What is the magnitude p2of the final momentum?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free