Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Under what circumstances is angular momentum constant? Give an example of a situation in which the x component of angular momentum is constant, but the y component isn’t.

Short Answer

Expert verified

The x component of the angular momentum is zero.

Step by step solution

01

Definition of Angular Momentum

The rotating inertia of an object or system of objects in motion about an axis that may or may not pass through the object or system is described by angular momentum.

02

Derivation of Angular Momentum

The net torque (τ) exerted to a particle about a given place equals the rate of change of its angular momentum at that location.

It is given by formula:

τ=dLdt …… (1)

If the external torque is not applied,τ=0,

Then equation (1), is written as

dLdt=0dL=0Lf=Li

Final angular momentum Lfis equal to the initial angular momentum LiL

Constant

If the net torque acting on the particle is zero, the total angular momentum of the rotating object remains constant.

03

Step 3: The situation in which the x component of angular momentum is constant is-

This is fixed at one end and moves in a plane of the paper when a ball moves in a circular manner. There will be a torque acting in the vertical direction due to gravitational and centripetal force.

As a result, the angular momentum component does not remain constant. The direction isn't affected by any horizontal torque. As a result, the angular momentum component has no value.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Figure11.89depicts a device that can rotate freely with little friction with the axle. The radius is0.4m,and each of the eight balls has a mass of0.3kg.The device is initially not rotating. A piece of clay falls and sticks to one of the balls as shown in the figure. The mass of the clay is0.066kgand its speed just before the collision is10m/s.

(a) Which of the following statements are true, for angular momentum relative to the axle of the wheel? (1) Just before the collision, r=0.42/2=0.4cos(45°)(for the clay). (2) The angular momentum of the wheel is the same before and after the collision. (3) Just before the collision, the angular momentum of the wheel is0. (4) The angular momentum of the wheel is the sum of the angular momentum of the wheel + clay after the collision is equal to the initial angular momentum of the clay. (6) The angular momentum of the falling clay is zero because the clay is moving in a straight line. (b) Just after the collision, what is the speed of one of the balls?

According to the Bohr model of the hydrogen atom, what is the magnitude of the translational angular momentum of the electron (relative to the location of the proton) when the atom is in the 2nd excited state above the ground state(N=3)?

In Figure 11.95 two small objects each of mass \({m_1}\)are connected by a light weight rod of length \(L.\) At a particular instant the center of mass speed is\({v_1}\) as shown, and the object is rotating counterclockwise with angular speed \({\omega _1}\). A small object of mass \({m_2}\) travelling with speed \({v_2}\) collides with the rod at an angle \({\theta _2}\) as shown, at a distance\(b\)from the center of the rod. After being truck, the mass \({m_2}\) is observed to move with speed \({v_4}\) at angle\({\theta _4}\).All the quantities are positive magnitudes. This all takes place in outer space.

For the object consisting of the rod with the two masses, write equations that, in principle, could be solved for the center of mass speed \({v_3},\) direction \({\theta _3},\) and angular speed \({\omega _3}\)in terms of the given quantities. Sates clearly what physical principles you use to obtain your equations.

Don’t attempt to solve the equations; just set them up.

A barbell is mounted on a nearly frictionless axle through its center (Figure 11.105). At this instant, there are two forces of equal magnitude applied to the system as shown, with the directions indicated, and at this instant, the angular velocity is 60 Rad/s, counterclockwise. In the next 0.001s,the angular momentum relative to the center increases by an amount 2.5 kg.meter square per second. What is the magnitude of each force? What is the net force?

A small rubber ball of radius rhits a rough horizontal floor such that its speedvjust before striking the floor at location A makes an angle of 60°with the horizontal and also has back spin with angular speed ω. It is observed that the ball repeatedly bounces from A to B, then from B back to A, etc. Assuming perfectly elastic impact determine (a) the required magnitude of ωof the back spin in terms of vand r, and (b) the minimum magnitude of co-efficient of static frictionμs to enable this motion. Hint: Notice that the direction of ω flips in each collision.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free