Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give an example of a situation in which an object is traveling a straight line, yet has non-zero angular momentum.

Short Answer

Expert verified

The angular momentum of the spacecraft relative to the asteroid has non-zero value.

Step by step solution

01

Definition of Angular Momentum

The angular momentum is a characteristic that describes an object or a system of items' rotational inertia in motion around an axis that may or may not pass through the object or system.

02

The example of a situation is-

A straight-moving spaceship passing an asteroid is an example of an object moving in a straight line with angular momentum greater than zero.

The situation is shown in the following figure.

Hence, the angular momentum of the spacecraft relative to the asteroid has non-zero value.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In figure two small objects each of mass m=0.3kgare connected by a lightweight rod of length d=1.5m.At a particular instant they have velocities whose magnitude are v1=38m/sand v2=60m/sand are subjected to external forces whose magnitudes are F1=41NandF2=26N. The distance role="math" localid="1668661918159" h=0.3m,and the distancew=0.7m.The system is moving in outer space. Assuming the usual coordinate system with+xto the right, +ytoward the top of the page, and +zout of the page toward you, calculated these quantities for this system:

(a) pโ†’total,(b) vโ†’CM, (c) Lโ†’tot,A, (d)Lโ†’rot,(e) Lโ†’transA, (f) Pโ†’totalat a time 0.23s after the initial time.

A common amusement park ride is a Ferris wheel (see figure, which is not drawn to scale). Riders sit in chairs that are on pivots so they remain level as the wheel turns at a constant rate. A particular Ferris wheel has a radius of 24 meters, and it make one complete revolution around its axle (at location A) in 20sIn all of the following questions, consider location A(at the center of the axle) as the location around which we will calculate the angular momentum. At the instant shown in the diagram, a child of mass40kg, sitting at location F, is traveling with velocity <7.5,0,0>m/s.

(a.) What is the linear momentum of the child? (b) In the definition Lโ†’=rโ†’ร—pโ†’,what is the vector rโ†’? (c) what is rโ†’โŠฅ? (d) what is the magnitude of the angular momentum of the child about location A? (e) What is the plane defined by rโ†’andpโ†’(that is, the plane containing both of these vectors)? (f) Use the right-hand rule to determine thecomponent of the angular momentum of the child about locationA. (g) You used the right-hand rule to determine the zcomponent of the angular momentum, but as a check, calculate in terms of position and momentum: What isypx? Therefore, what iszthe component of the angular momentum of the child about locationA? (h) The Ferris wheel keeps turning, and at a later time, the same child is at locationEwith coordinates<16.971,-16.971,0>m relative to location A, moving with velocity<5.303,5.303,0>m/s.Now what is the magnitude of the angular momentum of the child about location A?

In Figure 11.96a spherical non-spinning asteroid of mass\(M\)and radius\(R\)moving with speed\({v_1}\)to the right collides with a similar non-spinning asteroid moving with speed\({v_2}\)to the left, and they stick together. The impact parameter is\(d\).Note that\({I_{sphere}} = \frac{2}{5}M{R^2}.\)

After the collision, what is the velocity \({v_{CM}}\) of the center of mass and the angular velocity \(\omega \) about the center of mass? (Note that each asteroid rotates about its own center with this same \(\omega \)).

Pinocchio rides a horse on a merry-go-round turning counterclockwise as viewed from above, with his long nose always pointing forwards, in the direction of his velocity. Is Pinocchioโ€™s translational angular momentum relative to the center of the merry-go-round zero or nonzero? In nonzero, what is its direction? Is his rational angular momentum zero or nonzero? If nonzero, what is its direction?

If you did not already do problem P63 do it now. Also calculate numerically the angle through which the apparatus turns, in radians and degrees.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free