Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A comet orbits the sun (figure). When it is at location 1 it is a distance d1from the sun. When the comet is at location 2, it is a distanced2from the sun, and has magnitude of momentump2. (a) when the comet is at location 1, what is the direction of LA? (b) when the comet is at location 1, what is magnitude of LA? (c) When the comet is at location 2, what is the direction of LA? (d) when the comet is at location 2, what is the magnitude ofLA ? Later we’ll see that the angular momentum principle tells us that the angular momentum at location 1 must be equal to the angular momentum at location 2.

Short Answer

Expert verified

The comet is at location 1, the direction of LAis normally outward to the plane of the paper.

The comet is at location 1, the magnitude ofLA is =d1p1sinα.

The comet is at location 2, the direction of LAis directed out of the plane of the paper.

The comet is at location 2, the magnitude ofLA is=d2p2

Step by step solution

01

Definition of Angular Momentum.

The rotating inertia of an object or system of objects in motion about an axis that may or may not pass through the object or system is described by angular momentum.

02

Relation between the linear momentum and the angular momentum is-

(a.) The expression which relates the radius vector, linear momentum of the object, and the angular momentum is,

L=r×p

Here,ris the unit vector,pis the linear momentum vector, andL is the angular momentum vector.

Use the right-hand rule to find the direction of angular momentum vector.

The figure which shows the directions of linear momentum, radius vectors at locations 1 and 2 is given below.

03

When comet is at location 1-

When comet is at location 1, by right hand rule, the direction ofLA is normally outward to the plane of the paper.

At location 1, the magnitude of angular momentum LAis

|LA|=|d1×p1|=d1p1sinα

Therefore, the orbital angular momentum of the comet at location 1 isd1p1sinα .

04

When comet is at location 2-

The direction of angular momentum at the location 2 according to the right-hand rule is directed out of the plane of the paper.

At location 2, the magnitude of angular momentumLA is

|L2|=|d2×p2|=d2p2sin90°=d2p2

Therefore, the orbital angular momentum of the comet at location 2 isd2p2.

Hence, the direction and the magnitude of the comet is at location 1 is normally outward to the plane of the paper and=d1p1sinα .

The direction and the magnitude of the comet is at location 2 is directed out of the plane of the paper and=d2p2 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) What is the period of small-angle oscillations of a simple pendulum with a mass of 0.1kgat the end of a string of length1m?(b) What is the period of small-angle oscillations of a meter stick suspended from one end, whose mass is0.1kg?

A thin metal rod of mass1.3 kg and length0.4 m is at rest in outer space, near a space station (Figure 11.99). A tiny meteorite with mass 0.06 kg travelling at a high speed of strikes the rod a distance 0.2 m from the center and bounces off with speed 60 m/s as shown in the diagram. The magnitudes of initial and final angles to thex-axis of the small mass’s velocity are θi=26° and θf=82°.(a). Afterward, what is the velocity of the center of the rod? (b) Afterward, what is the angular velocity ω of the rod? (c) What is the increase in internal energy of the objects?

Model the motion of a meter stick suspended from one end on a low-friction. Do not make the small-angle approximation but allow the meter stick to swing with large angels. Plot on the game graph bothθand the zcomponent of ωvs. time, Try starting from rest at various initial angles, including nearly straight up (Which would be θi=π radians). Is this a harmonic oscillator? Is it a harmonic oscillator for small angles?

In figure two small objects each of mass m=0.3kgare connected by a lightweight rod of length d=1.5m.At a particular instant they have velocities whose magnitude are v1=38m/sand v2=60m/sand are subjected to external forces whose magnitudes are F1=41NandF2=26N. The distance role="math" localid="1668661918159" h=0.3m,and the distancew=0.7m.The system is moving in outer space. Assuming the usual coordinate system with+xto the right, +ytoward the top of the page, and +zout of the page toward you, calculated these quantities for this system:

(a) ptotal,(b) vCM, (c) Ltot,A, (d)Lrot,(e) LtransA, (f) Ptotalat a time 0.23s after the initial time.

A solid wood top spins at high speed on the floor, with a spin direction shown in figure 11.112

a. Using appropriately labeled diagrams, explain the direction of motion of the top (you do not need to explain the magnitude).

b. How would the motion change if the top had a higher spin rate? Explain briefly.

c. If the top were made of solid steel instead of wood, explain how this would affect the motion (for the same spin rate).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free