Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the angular momentum \({\overrightarrow L _A}\)If \({\overrightarrow r _A} = (9, - 9,0)\)m and \(\overrightarrow p = (12,10,0)\)\(kg.m/s?\)

Short Answer

Expert verified

The angular momentum \(\left( {\overrightarrow L } \right)\)\( = \left\langle {0,0,198} \right\rangle J \cdot s\)

Step by step solution

01

Definition of Angular Momentum.

The rotating inertia of an object or system of objects in motion about an axis that may or may not pass through the object or system is described by angular momentum..

02

The angular momentum \(\left( {\overrightarrow L } \right)\)is-

Given data

The radius vector \({\overrightarrow r _A} = \left\langle {9, - 9,0} \right\rangle m\)

The momentum vector is \(\overrightarrow p = \left\langle {12,10,0} \right\rangle kg \cdot m/s\)

The angle momentum \(\left( {\overrightarrow L } \right)\)is the cross product of radius vector \(\left( {{{\overrightarrow r }_A}} \right)\)and momentum vector \(\left( {\overrightarrow p } \right)\).That is,

\(\left( {\overrightarrow L } \right)\)\( = {\overrightarrow r _A} \times \overrightarrow p \)

\( = \left( {\left\langle {9, - 9,0} \right\rangle m} \right) \times \left( {\left\langle {12,10,0} \right\rangle kg \cdot m/s} \right)\)

\( = \left\langle { - 9 \cdot 0 - 010,0 \cdot 12 - 9 \cdot 0,9 \cdot 10 - \left( { - 9} \right) \cdot 12} \right\rangle \)

\( = \left\langle { - 0 - 0,0 - 0,90 + 108} \right\rangle \)

\( = \left\langle {0,0,198} \right\rangle J \cdot s\)

Hence, the angular momentum\(\left( {\overrightarrow L } \right)\)\( = \left\langle {0,0,198} \right\rangle J \cdot s\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free