Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the cross product which \(\left( {5\widehat I + 3\widehat J} \right) \times \left( { - 4\widehat I + 2\widehat J} \right),\)expands to\( - 20\widehat I \times \widehat I + 10\widehat I \times \widehat J - 12\widehat J \times \widehat I + 6\widehat J \times \widehat J\).

Short Answer

Expert verified

The cross product is -\( - 20\left( {\widehat I \times \widehat I} \right) + 10\left( {5\widehat I \times 2\widehat J} \right) + 3\widehat J \times \left( { - 4\widehat I} \right) + \left( {3\widehat J \times 2\widehat J} \right)\)

Step by step solution

01

Given data

Given is the cross product\(\left( {5\widehat I + 3\widehat J} \right) \times \left( { - 4\widehat I + 2\widehat J} \right)\)

02

Definition of cross product

The cross product is a binary operation on two vectors in three-dimensional space. It creates a vector that is perpendicular to both vectors. The vector product of two vectors, a and b, is represented by a, b. It generates a perpendicular vector to both a and b. Vector items are also known as cross goods. The cross product of two vectors produces a vector that may be calculated using the Right-hand Rule.

If \(\overrightarrow A \)and \(\overrightarrow B \) lie in the \(xy\) plane, we can use the results for the unit vectors to calculate the cross product, which will be in the \( + z\)or \( - z\) direction

\(\begin{aligned}{}\overrightarrow A \times \overrightarrow B &= ({A_x}\widehat i + {A_y}\widehat j) \times ({B_x}\widehat i + {B_y}\widehat j)\\ &= \left( {{A_x}{B_x}} \right)\widehat i \times \widehat j + \left( {{A_y}{B_y}} \right)\widehat j \times \widehat j + \left( {{A_x}{B_y}} \right)\widehat i \times \widehat j + \left( {{A_y}{B_x}} \right)\widehat j \times \widehat i\end{aligned}\)

03

Evaluate the given cross product

The given cross product can be evaluated as below:

\(\begin{aligned}{}\left( {5\widehat I + 3\widehat J} \right) \times \left( { - 4\widehat I + 2\widehat J} \right) &= 5\widehat I \times \left( { - 4\widehat I + 2\widehat J} \right) + 3\widehat J \times \left( { - 4\widehat I + 2\widehat J} \right)\\& = \left( {5\widehat I \times \left( { - 4\widehat I} \right)} \right) + \left( {5\widehat I \times 2\widehat J} \right) + 3\widehat J \times \left( { - 4\widehat I} \right) + \left( {3\widehat J \times 2\widehat J} \right)\\ &= - 20\left( {\widehat I \times \widehat I} \right) + 10\left( {5\widehat I \times 2\widehat J} \right) + 3\widehat J \times \left( { - 4\widehat I} \right) + \left( {3\widehat J \times 2\widehat J} \right)\end{aligned}\)

Hence, the product is \( - 20\left( {\widehat I \times \widehat I} \right) + 10\left( {5\widehat I \times 2\widehat J} \right) + 3\widehat J \times \left( { - 4\widehat I} \right) + \left( {3\widehat J \times 2\widehat J} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free