Chapter 20: Problem 9
The charge, \(q\), on a capacitor in an \(L C R\) series circuit satisfies the second-order differential equation $$ L \frac{\mathrm{d}^{2} q}{\mathrm{~d} t^{2}}+R \frac{\mathrm{d} q}{\mathrm{~d} t}+\frac{1}{C} q=E $$ where \(L, R, C\) and \(E\) are constants. Show that if \(2 L=C R^{2}\) the general solution of this equation is $$ \begin{aligned} &q= \\ &\mathrm{e}^{-t /(C R)}\left(A \cos \frac{1}{C R} t+B \sin \frac{1}{C R} t\right)+C E \end{aligned} $$ If \(i=\frac{\mathrm{d} q}{\mathrm{~d} t}=0\) and \(q=0\) when \(t=0\) show that the current in the circuit is $$ i=\frac{2 E}{R} \mathrm{e}^{-t /(C R)} \sin \frac{1}{C R} t $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.