Chapter 11: Problem 5
Use De Moivre's theorem to show that if \(z=\cos \theta+\mathrm{j} \sin \theta\) then (a) \(z^{n}=\cos n \theta+j \sin n \theta\) (b) \(z^{-n}=\cos n \theta-\mathrm{j} \sin n \theta\) Deduce that $$ z^{n}+\frac{1}{z^{n}}=2 \cos n \theta $$ and $$ z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.