Chapter 10: Q20P (page 528)
In cylindrical coordinates
Short Answer
The required values are mentioned below.
Chapter 10: Q20P (page 528)
In cylindrical coordinates
The required values are mentioned below.
All the tools & learning materials you need for study success - in one app.
Get started for freeParabolic cylinder coordinates
In equationlet the variables be rectangular coordinates x, y, z, and let , be general curvilinear coordinates, orthogonal or not (see end of Section 8 ). Show that is the matrix in [or in for an orthogonal system]. Thus show that the volume element in a general coordinate system is where , and that for an orthogonal system, this becomes [by or ], . Hint: To evaluate the products of partial derivatives in , observe that the same expressions arise as in finding . In fact, from and , you can show that row i times column j in is just in equations to .
Verify for a few representative cases that gives the same results as a Laplace development. First note that if , then is just . Then try letting an even permutation of , and then try an odd permutation, to see that the signs work out correctly. Finally try a case when (that is when two of the indices are equal) to see that the right hand side of is zero because you are evaluating a determinant which has two identical rows.
If P and S are -rank tensors, show that coefficients are needed to write each component of P as a linear combination of the components of S. Show that is the number of components in a -rank tensor. If the components of the -rank tensor are , then equation gives the components of P in terms of the components of S. If P and S are both symmetric, show that we need only 36different non-zero components in . Hint: Consider the number of different components in P and S when they are symmetric. Comment: The stress and strain tensors can both be shown to be symmetric. Further symmetry reduces the 36components of C in (7.5)to 21or less.
Show that (3.9) follows from (3.8) . Hint: Give a proof by contradiction. Let be the parenthesis in ; you may find it useful to think of the components written as a matrix. You want to prove that all 9 components of are zero. Suppose it is claimed that is not zero. Since is an arbitrary vector, take it to be the vector
, and observe that is then not zero in contradiction to
.Similarly show that all components of are zero as
claims.
What do you think about this solution?
We value your feedback to improve our textbook solutions.