Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Do Problem 5 for the coordinate systems indicated in Problems 10 to 13. Parabolic.

Short Answer

Expert verified

The required values are mentioned below.

U=1u2+v2Uue^u+1u2+v2Uve^v+1uvUϕe^ϕ.V=1(u2+v2)uvuu2+v2uvV1+1(u2+v2)uvuu2+v2uvV2)+1uvV3ϕ2U=1(u2+v2)uvuuvUu+1u2+v2uvvuvUu+1u2v22Uϕ×V=1uvu2+v2v(uvV3)-ϕu2+v2V2e^u+1uvu2+v2ϕu2+v2V1)-uuvV3e^v+1u2+v2uu2+v2V2-vu2+v2V1e^ϕ

Step by step solution

01

Given Information

The Parabolic.

02

Definition of cylindrical coordinates.

The coordinate system primarily utilized in three-dimensional systems is the cylindrical coordinates of the system. The cylindrical coordinate system is used to find the surface area in three-dimensional space.

03

Determining the value of ∇U, ∇.V , ∇2U and ∇×Vand  

The scale factors are given below.

hu=u2+v2hv=u2+v2hϕ=uv

FindUin Parabolic coordinates.

U=1huUue^u+1huUve^v+1huUϕe^ϕU=1u2+v2Uue^u+1u2+v2Uue^v+1uvUϕe^ϕ

Find the divergence of V.

.V=1(u2+v2)uvuu2+v2uvV1+vu2+v2uvV2+ϕ(u2+v2)V3.V=1(u2+v2)uvuu2+v2uvV1+1(u2+v2)uvuu2+v2uvV2)+1uvV3ϕ

Find the Laplacian of U.

2U=1(u2+v2)uvuuvUu+1u2+v2uvvuvUu+1u2v22Uϕ2U=1(u2+v2)uvuuvUu+1u2+v2uvvuvUu+1u2v22Uϕ

Find curl of V.

×V=1uvu2+v2v(uvV3)-ϕu2+v2V2e^u+1uvu2+v2ϕu2+v2V1)-uuvV3e^v+1u2+v2uu2+v2V2-vu2+v2V1e^ϕ

Hence, the required values are mentioned below.

role="math" localid="1659339435729" U=1u2+v2Uue^u+1u2+v2Uve^v+1uvUϕe^ϕ.V=1(u2+v2)uvuu2+v2uvV1+1(u2+v2)uvuu2+v2uvV2)+1uvV3ϕ2U=1(u2+v2)uvuuvUu+1u2+v2uvvuvUu+1u2v22Uϕ×V=1uvu2+v2v(uvV3)-ϕu2+v2V2e^u+1uvu2+v2ϕu2+v2V1)-uuvV3e^v+1u2+v2uu2+v2V2-vu2+v2V1e^ϕ

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free