Chapter 12: Q5P (page 592)
To sketch the graph of for x from 0 to .
Short Answer
The graph of the function is given below:
Chapter 12: Q5P (page 592)
To sketch the graph of for x from 0 to .
The graph of the function is given below:
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the recursion relation (5.8a) and the values of and to find localid="1664340078504" , and . [After you have found , use it to find and so on for the higher order polynomials.]
To show the following equation shown in the problem
.
Prove the least squares approximation property of Legendre polynomials [see (9.5) and (9.6)] as follows. Let f(x) be the given function to be approximated. Let the functions pl(x)be the normalized Legendre polynomials, that is, pl(x) = √(2l+1)/2 Pl(x) , so that
∫-11[pl(x)"]"2dx=1.
Show thatLegendre series for f(x)as far as the p2(x)term is
f(x)=c0p0(x)+c1p1(x) +c3p3(x) with c1 =∫-11f(x)pl(x) dx
Write the quadratic polynomial satisfying the least squares condition as b0p0(x)+b1p1(x)+b0p0(x)by Problem 5.14 any quadratic polynomial can be written in this form). The problem is to find b0, b1, b2so that I=∫-11[f2(x)+(b0-c0)2+(b1-c1)2+(b2-c2)2 -c02 -c12 -c22] dx
Now determine the values of the b's to make I as small as possible. (Hint: The smallest value the square of a real number can have is zero.) Generalize the proof to polynomials of degree n.
The equation for the associated Legendre functions (and for Legendre functions when m=0) usually arises in the form (see, for example, Chapter 13, Section 7) 1/sinθ d/dθ (sinθ dy/dθ)+[l (l+1)-m2/sin2θ] y=0.
Make the change of variable x=cosθ, and obtain (10.1):
(1-x2) y"-2xy'+[l (l+1) -m2/1-x2] y=0
Multiply(5.8e)by and integrate from -1 to 1. To evaluate the middle term, integrate by parts.
What do you think about this solution?
We value your feedback to improve our textbook solutions.