Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let x1,x2,..,xnbe independent random variables, each with density function f(x), expected valueμ , and varianceσ2 . Define the sample meanby.x=i=1nxiShowthatE(x)=μ,and .var(x)=σ2n (See Problems 5.9,5.13and6.15.)

Short Answer

Expert verified

The statement has been proven.

Step by step solution

01

Given Information

x1,x2,...,xn be the independent random variables, each with density functionf(x) .

02

Definition of the Arithmetic mean.

The arithmetic mean is the sum of all the values divided by the total number of values.

03

Prove the statement.

Let x1,x2,...,xnbe the independent random variable.

The mean is given below.

x1,x2,...,xnE(x¯)=E(1ni=1nxi)=1ni=1nE(xi)=1nnμ=μ

The variance is given below.

Var(x¯)=Var(1ni=1nxi)=1n2i=1nVar(xi)=1n2nσ2=σ2n

Hence the statement has been proven.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Are the following correct non-uniform sample spaces for a throw of two dice? If

so, find the probabilities of the given sample points. If not show what is wrong.

Suggestion: Copy sample space (2.4) and circle on it the regions corresponding to the points of the proposed non-uniform spaces.

(a) First die shows an even number.

First die shows an odd number.

(b) Sum of two numbers on dice is even.

First die is even and second odd.

First die is odd and second even.

(c) First die shows a number≤3.

At least one die shows a number > 3.

(a) Set up a sample space for the 5 black and 10 white balls in a box discussed above assuming the first ball is not replaced. Suggestions: Number the balls, say 1 to 5 for black and 6 to 15 for white. Then the sample points form an array something like (2.4), but the point 3,3 for example is not allowed. (Why?

What other points are not allowed?) You might find it helpful to write the

numbers for black balls and the numbers for white balls in different colors.

(b) Let A be the event “first ball is white” and B be the event “second ball is

black.” Circle the region of your sample space containing points favorable to

A and mark this region A. Similarly, circle and mark region B. Count the

number of sample points in A and in B; these are and . The region

AB is the region inside both A and B; the number of points in this region is

. Use the numbers you have found to verify (3.2) and (3.1). Also find

and and verify (3.3) numerically.

(c) Use Figure 3.1 and the ideas of part (b) to prove (3.3) in general.

A random variable x takes the values with probabilities 512,13,112,16.

As in Problem 11, show that the expected number of5's in n tosses of a die is n6.

Set up an appropriate sample space for each of Problems 1.1 to 1.10 and use itto solve the problem. Use either a uniform or non-uniform sample space or try both.

A letter is selected at random from the alphabet. What is the probability that it is one of the letters in the word “probability?” What is the probability that it occurs in the first half of the alphabet? What is the probability that it is a letter after x?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free