Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Do Problem 15for 2particles in 2 boxes. Using the model discussed in Example role="math" localid="1654939679672" 5, find the probability of each of the three sample points in the Bose-Einstein case. (You should find that each has probabilityrole="math" localid="1654939665414" 13, that is, they are equally probable.)

Short Answer

Expert verified

The required values are mentioned below.

PB1=PB2=PB3=13

Step by step solution

01

Given Information

The two particles are in two boxes.

02

Definition of uniform sample spaces.

If a given experiment's sample space is known to be uniform, the probability of an event can be calculated using the event sizes and the sample space.

03

Find the methods.

Use the Bose Einstein method. The number of method particles are not distinguishable but allow to put 2 balls in the same box. The number of methods arranged is given below.

M=C(n1+N,N)=C(21+2,2)=C(3,2)=3

All cases probably have three cases so the probability of each case is given below.

PB1=PB2=PB3=13

Hence, the required valuesare given below.

PB1=PB2=PB3=13

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two decks of cards are “matched,” that is, the order of the cards in the decks is compared by turning the cards over one by one from the two decks simultaneously; a “match” means that the two cards are identical. Show that the probability of at least one match is nearly.11/e

A single card is drawn at random from a shuffled deck. What is the probability that it is red? That it is the ace of hearts? That it is either a three or a five? That it is either an ace or red or both?

(a) Note that (3.4) assumes P(A) is not equal to 0 since PA(B)is meaningless if P(A) = 0.

Assuming both P(A) is not equal to 0 and P(B) is not equal to 0, show that if (3.4) is true, then

P(A)=PA(B)that is if B is independent of A, then A is independent of B.

If either P(A) or P(B) is zero, then we use (3.5) to define independence.

(b) When is an event E independent of itself? When is E independent of“not E”?

Two cards are drawn from a shuffled deck. What is the probability that both are red? If at least one is red, what is the probability that both are red? If at least one is a red ace, what is the probability that both are red? If exactly one is a red ace, what is the probability that both are red?

A trick deck of cards is printed with the hearts and diamonds black, and the spades and clubs red. A card is chosen at random from this deck (after it is shuffled). Find the probability that it is either a red card or the queen of hearts. That it is either a red face card or a club. That it is either a red ace or a diamond.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free