Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If u=f(x-ct)+g(x+ct), show that 2ux2=1c22ut2.

Short Answer

Expert verified

It is proved that 2ux2=1c22ut2.

Step by step solution

01

Given information.

Givenu=f(x-ct)+g(x+ct)

02

Definition of partial differentiation.

Partial differentiation is defined as the process, in which find the partial derivative of a function.

In Partial differentiation, the function has more than one variable and find the partial derivative of a function with respect to one variable and keeping the other variable constant.

03

Calculate ∂u2∂x2 and ∂2u∂t2.

2ux2=1c22ut2Find the partial differentiation of function,u=f(x-ct)+g(x+ct) with respect to x.

ux=f(x-ct)x+g(x+ct)x.........(1)

Find the partial differentiation of equation (1) with respect to x.

2ux2=2f(x-ct)x2+2g(x+ct)x2.........(2)

Find the partial differentiation of function,u=f(x-ct)+g(x+ct) with respect to t.

ut=-cf(x-ct)t+cg(x+ct)t.........(3)

Find the partial differentiation of equation (3) with respect to x.

2ut2=c2f(x-ct)t+c2g(x+ct)t=c22f(x-ct)t2+2g(x+ct)t2.........(4)

From equation (2),

localid="1659151087874" 2ut2=c22ux2

Or it can be simplified as:

2ux2=1c22ut2

Hence it is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free