Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Show that satisfies u(x,y)=yπ-f(t)dt(x-t)2+y2satisfiesuxx+uyy=0.

Short Answer

Expert verified

uxx+uyy=0.

Step by step solution

01

Given Information

Given that u(x,y)=yπ-f(t)dt(x-t)2+y2.

02

Formula Used

We know thatddxu(x)v(x)f(x,t)dt=f(x,v)dvdx-f(x,u)dudx+uvfxdtddxu(x)v(x)f(x,t)dt=f(x,v)dvdx-f(x,u)dudx+uvfxdt

03

Showing that uxx+uyy=0.

Using the formula

ux=yπfx-2.y2ddx-fx+2+y2ddx-+-xftx-t2+y2dt=yπ0-0+--2x-tftx-t2+y22dt=-2yπ-x-tftx-t2+y22dt

Solving further

localid="1659349480594" uxx=-2yπx-fx-2+y2ddx-x+fx+2+y2ddx-+-xx-tx-t2+y22ftdt=-2yπ0-0+-x-t2+y221-x-tx-t2+y22x-tx-t2+y24ftdt=-2yπ-x-t2+y2x-t2+y2-4x-t2x-t2+y24ftdt=-2yπ-y2-3x-t2x-t2+y23ftdt=-2yπ-y2-3x-t2x-t2+y23ftdt

Solving further

localid="1659350725416" ux,y=yπ-ftx-t2+y2=yπfx-2+y2ddy-f-x-2+y2ddy-+-y1x-t2+y2ftdt+yπ-ftx-t2+y2uy=-2yπ-yftx-t2+y22dt+1π-ftdtx-t2+y2

Solving foruyy

uyy=-2yπyfx-2+y22ddy-yf-x+2+y2ddy-+-xyftx-t2+y22dt+-2π-=1πfx-2+y2ddy+-yf(t)x-t2+y2dt=-2yπ0-0+x-t2+y21y2x-t2+y22yx-t2+y24+yftx-t2+y22dt+-2π-=1π0-0--2yx-t2+y22f(t)dt=-2yπ-x-t2-3y2ftx-t2+y23dt-4yπ-f(t)dtx-t2+y22

uxx+uyy=-2yπ-y2-3(x-t)2x-t2+y23f(t)dt-2yπ-x-t2+3y2x-t2+y23ftdt-4yπ-ftdtx-t2+y22=-2yπ--2x-t2+y2x-t2+y23=-4yπ-ftdtx-t2+y22=0

Henceuxx+uyy=0. .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free