Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Ifw=f(x,x2+y2,2xy)find (w/x)y(compare Problem 14).

Short Answer

Expert verified

The value of wxyisf1+2xf2+2yf3 .

Step by step solution

01

Given Information

The given equations w=fx,x2+y2,2xy.

Rewrite the functionw=fx,x2+y2,2xy as follows:

w=fx,s,t

Wheres=x2+y2...1 and t=2xy...2.

02

Differentiate the function w=f(x,s,t).

Differentiate the function as:

dw=fxdx+fsds+ftdt...3

Also, differentiate equation (1) and (2) as:

ds=2xdx+2ydydt=2ydx+2xdy

Substitute the values ofds and dtin (3) then:

dw=fxdx+fsds+ftdtdw=fxdx+fs2xdx+2ydy+ft2ydx+2xdydw=fxdx+2xfsdx+2yfsdy+2yftdx+2xftdydw=fx+2xfs+2yftdx+2yfs+2xftdy...4

Since, yis a constant, sody=0 .

Substitute dy=0in equation (4) as:

role="math" localid="1664263726727" dw=fx+2xfs+2yftdx+2yfs+2xftdydwy=fx+2xfs+2yftdxy+2yfs+2xft0dwy=fx+2xfs+2yftdxy

Here, the subscripty indicates thatby is a constant.

Next divide by dxy, then:

wxy=fxs,t+2xfst,x+2yftx,s

03

Suppose f1=(∂f∂x)s,t , role="math" localid="1664263861882"  f2=(∂f∂s)t,x,and f3=(∂f∂t)x,s .

Substitute the values of,f1 , f2andf3 as:

wxy=fxs,t+2xfst,x+2yftx,swxy=f1+2xf2+2yf3

Therefore, the answer iswxy=f1+2xf2+2yf3 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free