Chapter 13: Q6P (page 647) URL copied to clipboard! Now share some education! Question:Let V=0in the Schrodinger equation (3.22) and separate variables in 2-dimensional rectangular coordinates. Solve the problem of a particle in a 2-dimensional square box, 0<x<l,0<y<lThis means to find solutions of the Schrodinger equation which are 0 for x=0,x=I,y=0,y=I, that is, on the boundary of the box, and to find the corresponding energy eigenvalues. Comments: If we extend the idea of a “particle in a box” (see Section 3, Example 3) to two or three dimensions, the box in 2D might be a square (as in this problem) or a circle (Problem 8); in 3D it might be a cube (Problem 7.17) or a sphere (Problem 7.19). In all cases, the mathematical problem is to find solutions of the Schrodinger equation with V=0inside the box and ψ=0on the boundary of the box, and to find the corresponding energy eigenvalues. In quantum mechanics, ψdescribes a particle trapped inside the box and the energy eigenvalues are the possible values of the energy of the particle. Short Answer Expert verified The solution is ψ(x,y,t)=∑n=1∞∑m=1∞sinnπIxsinmπIye-ihπ2(n2+m2)2ml2t . Step by step solution 01 Given Information. An expression has been given as 0<x<1,0<y<1. 02 Definition of Schrodinger equation: A linear partial differential equation that determines the wave function of a quantum-mechanical system is known as the Schrödinger equation.The Schrodinger equation is -h22m∇2ψ+Vψ=ih∂∂tψ. 03 Use Schrodinger equation: Use the Schrodinger equation.-h22m∇2ψ+Vψ=ih∂∂tψAssume a solution of the form mentioned below.ψx,y,t=ψ(x,y)T(t)The equation can be separated into a time equation with the solution given below.Tt=e-iEthIt can be separated into a space equation (with V = 0 )-h22m∇2ψ=EψPut a solution of the form given below.ψ=X(x)Y(y)Then divide byX(x)Y(y) .1xd2Xdx2+1Yd2Ydy2=-2mEh2=-kx2-ky21xd2Xdx2+kx2+1Yd2dy2+ky2=0The solutions are a trigonometric solutions.X(x)=cos(kxx)sin(kxx)Y(y)=cos(kyy)sin(kyy) 04 Use boundary condition: Y(0)=0On the boundaryψ=0 .ψ(0,y,t)=0ψ(l,y,t)=0ψ(x,0,t)=0ψ(x,I,t)=0x(0)=0⇒0=Csin(kx0)+Dcos(kx0)D=0X(I)=0⇒0=sin(kxI)kxI=nπkx=nπI" src="uncaught exception: Http Error #500in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('7b27ed52a9b086c...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">" src="uncaught exception: Http Error #500in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('7b27ed52a9b086c...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">Y(0)=0⇒0=Esin(ky0)+Fcos(ky0)F=0Y(I)=00=sin(kyl)kyl=mπky=mπl 05 Calculate Energy: Calculate the energy.nx2+ny2=2mEh2=nπI2+mπl2=π2l2(n2+m2)E=h2π2(n2+m2)2ml2It can be seen that the energies are a degenerate. n and m can vary to get the same value.Write the solution.ψN=sinnπlxsinmπlye-iENthEN=h2π2(n2+m2)2ml2ψ(x,y,t)=∑n=1∞∑m=1∞sinnπIxsinmπlye-ihπ2(n2+m2)2ml2tHence, the final solution isψ(x,y,t)=∑n=1∞∑m=1∞sinnπIxsinmπlye-ihπ2(n2+m2)2ml2t Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!