Chapter 8: Q5.12P (page 415)
Solve the following differential equations by the methods discussed above and compare computer solutions.
Short Answer
The solution is
Chapter 8: Q5.12P (page 415)
Solve the following differential equations by the methods discussed above and compare computer solutions.
The solution is
All the tools & learning materials you need for study success - in one app.
Get started for freeBy using Laplace transforms, solve the following differential equations subject to the given initial conditions.
In Problem 33 to 38, solve the given differential equations by using the principle of superposition [see the solution of equation (6.29)]. For example, in Problem 33, solve three differential equations with right-hand sides equal to the three different brackets. Note that terms with the same exponential factor are kept together; thus, a polynomial of any degree is kept together in one bracket.
A solution containing 90% by volume of alcohol (in water) runs at 1 gal/min into a 100-gal tank of pure water where it is continually mixed. The mixture is withdrawn at the rate of 1 gal/min. When will it start coming out 50% alcohol?
For each of the following differential equations, separate variables and find a solution containing one arbitrary constant. Then find the value of the constant to give a particular solution satisfying the given boundary condition. Computer plot a slope field and some of the solution curves.
2. when
The momentum pof an electron at speednear the speedof light increases according to the formula , whereis a constant (mass of the electron). If an electron is subject to a constant force F, Newton’s second law describing its motion is localid="1659249453669"
Find and show that as . Find the distance travelled by the electron in timeif it starts from rest.
What do you think about this solution?
We value your feedback to improve our textbook solutions.