Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let Dstand for d/dx, that is, Dy=dy/dx; then

D2y=D(Dy)=ddx(dydx)=d2ydx2,D3y=d3ydx3,etc.

D(or an expression involving D) is called a differential operator. Two operators are equal if they give the same results when they operate on yFor example,

D(D+x)y=ddx(dydx+xy)=d2ydx2+xdydx+y=(D2+xD+1)y

So, we say that

D(D+x)=D2+xD+1

In a similar way show that:

(a) (Da)(Db)=(Db)(Da)=D2(b+a)D+abFor constantand.

(b).D3+1=(D+1)(D2D+1)

(c)Dx=xD+1. (Note thatDand xdo not commute, that is,DxxD.)

(d),(Dx)(D+x)=D2x2+1but.(D+x)(Dx)=D2x21

Comment: The operator equations in (c) and (d) are useful in quantum mechanics; see Chapter 12, Section 22.

(D+x)(Dx)=D2x21

Short Answer

Expert verified

a) It isproved that.(Da)(Db)=(Db)(Da)=D2(b+a)D+ab

b)It isproved that.(D3+1)=(D+1)(D2D+1)

c)It is proved that.Dx=xdydx+1

d)It is proved that.(Dx)(D+x)=D2x2+1

Step by step solution

01

Given information from question 

Given information are

D=ddxDy=dydxD2y=ddx(dydx)

It is given that

(Da)(Db)=(Db)(Da)=D2(b+a)D+ab,here.D=ddx

02

Algebraic equation 

Use the algebraic equation:

(a3+b3)=(a+b)(a2ab+b2)

03

Prove(D−a)(D−b)=(D−b)(D−a)=D2−(b+a)D+ab

a)

Let us consider:

(Da)(Db)=D(Db)a(Db)=ddx(dydxby)a(ddxby)=d2ydx2bdydxadydxaby

Further solve the equation

=d2ydx2(b+a)dydxaby=D2(b+a)D+ab

Similarly,

(Db)(Da)=D(Da)b(Da)=ddx(dydxay)b(ddxay)=d2ydx2adydxbdydxaby

Solve further

=D2(b+a)D+ab

Hence, it is proved

04

Prove D3+1=(D+1)(D2−D+1)

(b)

Let us consider:

(D3+1)=(D+1)(D2D+1)=D(D2D+1)+1(D2D+1)=ddx(d2ydx2dydx+y)+1(d2ydx2dydx+y)=d3ydx3d2ydx2+dydx+d2ydx2dydx+y

Further solve the equation

=d3ydx3+0+0+y=d3ydx3+y=D3+1

05

ProveDx=xD+1

(c)

Let us consider:

Dx=ddx(xy)=xdydx+dxdxy=xdydx+(1)y

Solve further,

=xdydx+y=xdydx+1

06

Prove (D−x)(D+x)=D2−x2+1 

(d)

Let us consider:

(Dx)(D+x)=D(D+x)x(D+x)=ddx(dydx+xy)+x(dydx+xy)=d2ydx2+xdydx+yxdydxx2y

Solving further,

=d2ydx2+yx2y=d2ydx2+1x2=D2+1x2=D2x2+1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free