Chapter 8: Q27P (page 415)
Find the general solutions of the following equations and compare computer solutions.
Short Answer
The general solution is
Chapter 8: Q27P (page 415)
Find the general solutions of the following equations and compare computer solutions.
The general solution is
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the orthogonal trajectories of each of the following families of curves. In each case, sketch or computer plot several of the given curves and several of their orthogonal trajectories. Be careful to eliminate the constant from for the original curves; this constant takes different values for different curves of the original family, and you want an expression for which is valid for all curves of the family crossed by the orthogonal trajectory you are trying to find. See equations to
Find the orthogonal trajectories of each of the following families of curves. In each case, sketch or computer plot several of the given curves and several of their orthogonal trajectories. Be careful to eliminate the constant from for the original curves; this constant takes different values for different curves of the original family, and you want an expression for which is valid for all curves of the family crossed by the orthogonal trajectory you are trying to find. See equations to
Solve the equation for the rate of growth of bacteria if the rate of increase is proportional to the number present but the population is being reduced at a constant rate by the removal of bacteria for experimental purposes
A solution containing 90% by volume of alcohol (in water) runs at 1 gal/min into a 100-gal tank of pure water where it is continually mixed. The mixture is withdrawn at the rate of 1 gal/min. When will it start coming out 50% alcohol?
(a) Show that , and so on; that is, for any positive integral ,
Thus, show that ifis any polynomial in the operator , then .
This is called the exponential shift.
(b) Use to show that .
(c) Replace by , to obtain
This is called the inverse exponential shift.
(d) Using (c), we can change a differential equation whose right-hand side is an exponential times a
polynomial, to one whose right-hand side is just a polynomial. For example, consider
; multiplying both sides by and using (c), we get
Show that a solution of is ; then or use this method to solve Problems 23 to 26.
What do you think about this solution?
We value your feedback to improve our textbook solutions.