Chapter 8: Q26P (page 443)
By using Laplace transforms, solve the following differential equations subject to the given initial conditions.
Short Answer
The given differential equation's solution is .
Chapter 8: Q26P (page 443)
By using Laplace transforms, solve the following differential equations subject to the given initial conditions.
The given differential equation's solution is .
All the tools & learning materials you need for study success - in one app.
Get started for free(a)Consider a light beam travelling downward into the ocean. As the beam progresses, it is partially absorbed and its intensity decreases. The rate at which the intensity is decreasing with depth at any point is proportional to the intensity at that depth. The proportionality constant is called the linear absorption coefficient. Show that if the intensity at the surface is , the intensity at a distance s below the surface is . The linear absorption coefficient for water is of the order of (the exact value depending on the wavelength of the light and the impurities in the water). For this value of μ, find the intensity as a fraction of the surface intensity at a depth of 1 ft, ft,
ft,
mile. When the intensity of a light beam has been reduced to half its surface intensity , the distance the light has penetrated into the absorbing substance is called the half-value thickness of the substance. Find the half-value thickness in terms of . Find the half-value thickness for water for the value of given above.
(b) Note that the differential equation and its solution in this problem are mathematically the same as those in Example 1, although the physical problem and the terminology are different. In discussing radioactive decay, we call the decay constant, and we define the half-life T of a radioactive substance as the time when (compare half-value thickness). Find the relation between and T.
By using Laplace transforms, solve the following differential equations subject to the given initial conditions.
Consider an equation for damped forced vibrations (mechanical or electrical) in which the right-hand side is a sum of several forces or emfs of different frequencies. For example, in (6.32) let the right-hand side be ,
Write the solution by the principle of superposition. Suppose, for giventhat we adjust the system so that ; show that the principal term in the solution is then the first one. Thus, the system acts as a "filter" to select vibrations of one frequency from a given set (for example, a radio tuned to one station selects principally the vibrations of the frequency of that station).
Using , find the general solution of each of the following differential equations. Compare a computer solution and, if necessary, reconcile it with yours. Hint: See comments just after , and Example 1.
In Problem 33 to 38, solve the given differential equations by using the principle of superposition [see the solution of equation (6.29)]. For example, in Problem 33, solve three differential equations with right-hand sides equal to the three different brackets. Note that terms with the same exponential factor are kept together; thus, a polynomial of any degree is kept together in one bracket.
What do you think about this solution?
We value your feedback to improve our textbook solutions.