Chapter 8: Q1P (page 394)
Verify the statement of Example 2. Also verify that
Short Answer
It is verified that
Step by step solution
Given information
The given differential equation is
Meaning of differential equation
In mathematics, an equation with only one independent variable and one or more of its derivatives with respect to the variable is referred to as anordinarydifferentialequation or ODE.In other words, the ODE is a relation with one independent variable x, a real dependent variable y, and several derivatives
Verify that y=sinhxand are src="" role="math" localid="1654777843844" src="https://studysmarter-mediafiles.s3.amazonaws.com/media/textbook-exercise-images/6a4aaf49-ce43-4f78-b15e-749e898c77f3.svg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIA4OLDUDE42UZHAIET%2F20220610%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20220610T043414Z&X-Amz-Expires=90000&X-Amz-SignedHeaders=host&X-Amz-Signature=cc237fd4561ab3ecc30c7d4f7bdbbb046a3c04d4e21a63c9934971f064a1f5ab" src="https://studysmarter-mediafiles.s3.amazonaws.com/media/textbook-exercise-images/6a4aaf49-ce43-4f78-b15e-749e898c77f3.svg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIA4OLDUDE42UZHAIET%2F20220609%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20220609T150856Z&X-Amz-Expires=90000&X-Amz-SignedHeaders=host&X-Amz-Signature=c4ce591bcf24847f0fc7374ae1fceef8dce3d8e9776e41f6e95d70c8eb2e3c2c" src="https://studysmarter-mediafiles.s3.amazonaws.com/media/textbook-exercise-images/6a4aaf49-ce43-4f78-b15e-749e898c77f3.svg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIA4OLDUDE42UZHAIET%2F20220609%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20220609T125839Z&X-Amz-Expires=90000&X-Amz-SignedHeaders=host&X-Amz-Signature=6850392aebd827bdd97810dde329232717585255e7a69b28914af47b424848b6" src="https://studysmarter-mediafiles.s3.amazonaws.com/media/textbook-exercise-images/6a4aaf49-ce43-4f78-b15e-749e898c77f3.svg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIA4OLDUDE42UZHAIET%2F20220609%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20220609T124406Z&X-Amz-Expires=90000&X-Amz-SignedHeaders=host&X-Amz-Signature=d367af5c62f2071e722c36452c88646b93847e32bb2808d2a3add663ea30d7b3" y=sinhxthe solutions for the differential equation y''=y
Example 2 states that the differential equation
Letโs start with
Substitutethisin the differential equation.
For,
Substitutethisin the differential equation.
For
.Again substitute this in the differential equation.
Now, verify that there are two solutions for the same differential equation.
The first one is .
localid="1654779330725"
Substitute this into the given differential equation.
localid="1654779345044"
The second one is.localid="1654779359740"
Substitute this into the given differential equation.
localid="1654779380803"
Hence, proved.
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!