Chapter 3: Q8P (page 141)
(a) Prove that. Hint: See.
(b) Verify (9.11), that is, show that (9.10) applies to a product of any number of matrices. Hint: Use (9.10)and (9.8).
Short Answer
a) It is proven that .
b) It is proven that .
Chapter 3: Q8P (page 141)
(a) Prove that. Hint: See.
(b) Verify (9.11), that is, show that (9.10) applies to a product of any number of matrices. Hint: Use (9.10)and (9.8).
a) It is proven that .
b) It is proven that .
All the tools & learning materials you need for study success - in one app.
Get started for freeVerify (6.14) by multiplying the matrices and using trigonometric addition formulas.
Show that the given lines intersect and find the acute angle between them.
Let . (a) Find a unit vector in the same direction as A . Hint: Divide A by . (b) Find a vector in the same direction as A but of magnitude 12 . (c) Find a vector perpendicular to A . Hint: There are many such vectors; you are to find one of them. (d) Find a unit vector perpendicular to A . See hint in (a).
Evaluate the determinants in Problems 1 to 6 by the methods shown in Example 4. Remember that the reason for doing this is not just to get the answer (your computer can give you that) but to learn how to manipulate determinants correctly. Check your answers by computer.
Show that ifA and Bare matrices which don't commute, then , but if they do commute then the relation holds. Hint: Write out several terms of the infinite series for , and and, do the multiplications carefully assuming that anddon't commute. Then see what happens if they do commute
What do you think about this solution?
We value your feedback to improve our textbook solutions.