Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the angle between the given planes.

2x+y-2z=3 and 3x-6y-2z=4

Short Answer

Expert verified

The angle between the planes is θ79.

Step by step solution

01

Concept and formula used

The angle formed by the planes and the normal to the planes is same.

To determine the angle between the vectors by using the formulaθ=cos-1A×B|A||B| .

02

Find the angle

The given planes are,2x+y-2z=3 and 3x-6y-2z=4.

Calculating gives the values as below:

A=A=(2)2+(1)2+(-2)2=3B=B=(3)2+(-6)2+(-2)2=7A×B=(2)(3)+(1)(-6)+(-2)(-2)=6-6+4=4

Now find the angle:

θ=cos-1A×BAB=cos-147×3=cos-142179

The angle between the planes is θ79.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Are the following linear vector functions? Prove your conclusions using (7.2).

4.F(r)=r+A,whereAis a given vector.

Find the symmetric equations (5.6) or (5.7) and the parametric equations (5.8) of a line, and/or the equation (5.10) of the plane satisfying the following given conditions.

Line through and parallel to the line .

Answer

The symmetric equations of the line is .

The parametric equation is .

Step-by-Step Solution

Step 1: Concept of the symmetric and parametric equations

The symmetric equations of the line passing through and parallel to is

The parametric equations of the line are

Step 2: Determine the symmetric equation of a straight line

The given point is and the line is .

The given line is in the form of . So, we get

The symmetric equations of the straight line passing through and parallel to is given by

Thus, the required solution is .

Step 3: Determine the parametric equation of a straight line.

The parametric equations of the straight line passing through and parallel to is given by

Or

.

Thus, the required solution is .

Show that ifA and Bare matrices which don't commute, then e(A+B)=eAeB , but if they do commute then the relation holds. Hint: Write out several terms of the infinite series for eAeB , and e(A+B)and, do the multiplications carefully assuming that anddon't commute. Then see what happens if they do commute

For each of the following problems write and row reduce the augmented matrix to find out whether the given set of equations has exactly one solution, no solutions, or an infinite set of solutions. Check your results by computer. Warning hint:Be sure your equations are written in standard form. Comment: Remember that the point of doing these problems is not just to get an answer (which your computer will give you), but to become familiar with the terminology, ideas, and notation we are using.

3.

Let each of the following matrices represent an active transformation of vectors in (x,y)plane (axes fixed, vector rotated or reflected).As in Example 3, show that each matrix is orthogonal, find its determinant and find its rotation angle, or find the line of reflection.

12(-1-11-1)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free