Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find zby Cramer's rule:

{(a-b)x-(a-b)y+3b2z=3ab(a+2b)x-(a+2b)y-3ab+3b2z=3b2bx+ay-2b2+a2z=0

Short Answer

Expert verified

The required value is z=1.

Step by step solution

01

Formula and concept used

If AX=Bis the system of simultaneous linear equations, Dthe determinant of coefficient matrix A, and Dzis the determinant of matrix obtained by replacing third column of matrix A, then the value ofzisZ=DzD.

02

Computing the value of the determinant

The given system of linear equations may be written as

(a-b)-(a-b)3b2(a+2b)-(a+2b)-(3ab+3b2)ba-(2b2+a2)xyz=3ab3b20or AX=B

The determinant of the coefficient matrix is,

role="math" localid="1664277759275" D=(a-b)-(a-b)3b2(a+2b)-(a+2b)-(3ab+3b2)ba-(2b2+a2)

Compute the value of by row and column operations as:

role="math" localid="1664278361879" D=(a-b)-(a-b)3b2(a+2b)-(a+2b)-(3ab+3b2)ba-(2b2+a2)C1C1+C20-(a-b)3b20-(a+2b)-(3ab+3b2)a+ba-(2b2+a2)R2R2-R10-(a-b)3b20-3b-(3ab+3b2)a+ba-(2b2+a2)

Simplify further.

D=(a+b)0-(a-b)-3b20-3b-(3ab+6b2)1a-(2b2+a2)=(a+b)(a-b)3ab+6b2+9b3=(a+b)3a2b+6ab2-3ab2-6b3+9b3=(a+b)3a2b+3ab2+3b3=3b(a+b)a2+ab+b2

Thus, D=3b(a+b)a2+ab+b2.

Now, find Dz.

Dz=(a-b)-(a-b)3ab(a+2b)-(a+2b)3b2ba0C1C1+C20-(a-b)3ab0-(a+2b)3b2a+ba0

Evaluate it further.

Dz=3b(a+b)0-(a-2b)a0-(a+2b)b1a0=3b(a+b)[-b(a-b)+a(a+2b)]=3b(a+b)a2+ab+b2

Thus,Dz=3b(a+b)a2+ab+b2 .

Hence,z=DzD=3b(a+b)a2+ab+b23b(a+b)a2+ab+b2=1 .

Thus, the value of z=1.

The solution of linear equation for one variable z=1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free