Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the following limits using Maclaurin series and check your results by computer. Hint: First combine the fractions. Then find the first term of the denominator series and the first term of the numerator series.

(a)limxโ†’0(1x-1ex-1)(b)limxโ†’0(1x2-cosxsin2x)(c)limxโ†’0(csc2x-1x2)(d)limxโ†’0(In1+xx2-1x)

Short Answer

Expert verified

The required value of limits are mentioned below:

(a)limxโ†’0(1x-1ex-1)(b)limxโ†’0(1x2-cosxsin2x)(c)limxโ†’0(csc2x-1x2)(d)limxโ†’0(In(1+x)x2-1x)

Step by step solution

01

Given Information

The Maclaurin series, i.e.,fx=f0+f'0x+f"02!x2+f303!x3+...+fn0n!xn+....

02

Definition of Limit of a Series

As the number of terms approaches infinity, the series' limit is the value that the series' terms are approaching.

03

(a) Calculate the limit

Use Maclaurin series expansion of ex,

ex=1+xx22!+x33!+x44!+...ex-1=x+x22!+x33!+x44!+...ex-1-x=x22!+x33!+x44!+...x(ex-1)=x2+x22!+x33!+x44!+...

Further, solve the limit limxโ†’01x-1ex-1as:

limxโ†’0ex-1-xxex-1=limxโ†’0x22!+x33!+x44!+..x2+x22!+x43!+x54!+..limxโ†’0ex-1-xxex-1=limxโ†’012+x3!+x24!+...1+x2+x23!+x34!+...limxโ†’01x-1ex-1=12

04

Verify the value of the limit

Use the MATLAB tool to verify the limit.

Hence, the required value of limits is mentioned as,limxโ†’01x-1ex-1=12.

05

(b) Calculate the limit

Use Maclaurin series expansion of sinx,

sinx=x-x36+x5120+...sin2x=x-x36+x5120+....x-x36+x5120+...sin2x=x2-x43+2x645+.....

Use Maclaurin series expansion of cosx,

cosx=1-x22+x424-x6720+....x2cosx=x2-x42+x624+....sin2x-x2cosx=x2-x43+2x645+....-x2-x42+x624+....sin2x-x2cosx=x46+x6360+.....

Further, solve the limit limxโ†’01x2-cosxsin2xas:

role="math" localid="1658556989686" limxโ†’01x2-cosxsin2x=x46+x6360+...x4-x63+2x845+...limxโ†’01x2-cosxsin2x=16+x2360+....1-x23+2x445+....limxโ†’01x2-cosxsin2x=16

06

Verify the value of the limit

Use the MATLAB tool to verify the limit as:

Hence, the required value of limits is mentioned as limxโ†’01x2-cosxsin2x=16.

07

(c) Calculate the limit

Rewrite the limit as,

limxโ†’0csc2x-1x2=limxโ†’01sin2x-1x2limxโ†’01sin2x-1x2=limxโ†’0x2-sin2xx2sinx

Use Maclaurin series expansion of sinx,

sin2x=x2-x43+2x645+....x2-sin2x=x43-2x645-....x2sin2x=x4-x63+2x845+....

Further, solve the limit limxโ†’0csc2x-1x2as:

limxโ†’0csc2x-1x2=x43-2x645-....x4-x63+2x845+...limxโ†’0csc2x-1x2=13-2x245-...1-x23+2x445limxโ†’0csc2x-1x2=13

08

Verify the value of the limit

Use the MATLAB tool to verify the limit.

Hence, the required value of limits is mentioned as limxโ†’0csc2x-1x2=13.

09

(d) Calculate the limit

Use Maclaurin series expansion of In1+x,

In1+x=x-x22+x33-x44+....In1+x-x=-x22+x33-x44+....In1+x-xx2=-12+x3-x24+....

Further, solve the limit limxโ†’0In1+xx2-1xas:

limxโ†’0In1+xx2-1x=limxโ†’0-12+x3-x24+....limxโ†’0In1+xx2-1x=-12

10

Verify the value of the limit

Use the MATLAB tool to verify the limit.

Hence, the required value of limits is mentioned as limxโ†’0In1+xx2-1x=-12.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free