Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given the measurements.

x:5.8,6.1,6.4,5.9,5.7,6.2,5.9y:2.7,3.0,2.9,3.3,3.1

Find the mean value and the probable error of 2xy,  y2x,  eyand xy2.

Short Answer

Expert verified

Required expressions are,

x¯=6,rx=0.0925y¯=3,ry=0.0624

2xy¯=9,rw=0.14y2x¯=3,r=0.409

ey¯=20,r=1.35x/y2¯=23,r=0.03

Step by step solution

01

Given Information

Measurements are mentioned below:

x:5.8,6.1,6.4,5.9,5.7,6.2,5.9y:2.7,3.0,2.9,3.3,3.1

02

Definition of Probable error. 

The amount by which a sample's arithmetic mean is predicted to vary solely due to chance.

03

Calculate mean and probable error value of x .

Calculate expected value.

x¯=i=1nxin=5.7+5.8+2×5.9+6.1+6.2+6.47=6

Calculate variance.

Var(x)=1nx1i=1n(xix¯)2=16[(0.3)2+2(0.2)2+3(0.1)2+(0.4)2]=0.06

Calculate error of values.

σmx=Var(x)n=0.067=0.0925

Calculate probable error.

rx=0.6745(0.0925)=0.0624

04

Calculate mean and probable error value of y 

Calculate expected value.

y¯=i=1nyin=2.7+2.9+3.0+3.1+3.35=3

Calculate variance.

σy2=1ni1i=1n(yiy¯)2=14[2×(0.3)2+2×(0.1)2]=0.05

Calculate error of values.

σmy=Var(y)ny=0.055=0.1

Calculate probable error.

ry=0.6745(0.1)=0.0674

05

Calculate mean and probable error value of  .2x−y

Calculate expected value.

w¯=2xy¯=2x¯y¯=2(6)3=9w¯=2xy¯=2x¯y¯=2(6)3=9

Calculate error of values.

σmw=4σmu2+σmy2=4(0.0925)2+(0.1)2=0.21

Calculate probable error.

rw=0.6745(0.21)=0.14

06

Calculate mean and probable error value of.y2−x 

Calculate expected value.

w=y2xE(w)=μy2μx=326=3

Calculate error of values.

σmw=[(wx)2σmx2+(wy)2σmy2](x,y)=(x¯,y¯)σmw=(1)2(0.0925)2+(2×3)2(0.1)2=0.607

Calculate probable error.

rw=(0.6745)(0.607)=0.409

07

Calculate mean and probable error value of  ey. 

Calculate expected value.

w=eyE(w)=eμ=e3=20

Calculate error of values.

σmw=[(wx)2σme2+(wy)2σmy2](x,y)=(x¯,y¯)σmw=(e3)2(0.1)2=2.0

Calculate probable error.

rw=(0.6745)(2.0)=1.35

08

Calculate mean and probable error value of .xy2

Calculate expected value.

w=xy2E(w)=xy2=μxμy2632

E(w)=23

Calculate error of values.

σmw=[(wx)2σmx2+(wy)2σmy2](x,y)=(x¯,y¯)σmw=(132)2(0.0925)2+(2×633)2(0.1)2=0.046

Calculate probable error.

rw=(0.6745)(0.046)=0.03

Hence, required expressions are,

x¯=6,rx=0.0925y¯=3,ry=0.0624

2xy¯=9,rw=0.14y2x¯=3,r=0.409

ey¯=20,r=1.35x/y2¯=23,r=0.03

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free