Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To prove that the sum of the residues at finite points plus the residence at infinity is zero.

Short Answer

Expert verified

Sum of the residues at the singularity is zero.

Step by step solution

01

Use residue theorem

Proof: - Let C be a closed contour which encloses all the singularities of f(z) except that at infinity, then by residue theorem as follows:

cf(z)dz=2πiR+R+=12πicf(z)dz

By definition we know that:

-12πicf(z)dz=Res(z=)

02

Add the above equations for the solution

By adding, obtain:

R+Res(z=)=0

That is, sum of the residues at the singularity is zero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the residues of the following functions at the indicated points. Try to select the easiest of the methods outlined above. Check your results by computer.

cosz-1z7 at z = 0

Using the definition (2.1) of , show that the following familiar formulas hold. Hint : Use the same methods as for functions of a real variable.

26..

Use the following sequence of mappings to find the steady state temperature T(x,y) in the semi-infinite strip y0,0xπ if T(x,0)=1000,T(0,y)=T(π,y)=0and T(x,y)0as y. (See Chapter 13, Section 2 and Problem 2.6.)

Usew=(z'-1z'+1)to map the half plane v0on the upper half plane y'>0, with the positive axis corresponding to the two rays x'>1and x'<-1, and the negative yaxis corresponding to the interval -1x1of the x'axis. Use z'=-coszto map the half-strip0<x<π,y>0on the Z'half plane described in (a). The interval role="math" localid="1664365839099" -1x'<1,y'=0corresponds to the base0<x<π,y=0of the strip.

Comments: The temperature problem in the (u,v) plane is like the problems shown in the z plane of Figures 10.1 and 10.2, and so is given by T=(100π)arctan(vu). In the z plane you will find T(x,y)=100πarctan2sinxsinhysinh2y-sin2x

Put tanα=sinxsinhy and use the formula for tan2αto get T(x,y)=200πarctansinxsinhy" width="9" height="19" role="math">

Note that this is the same answer as in Chapter 13 Problem 2.6, if we replace 10 by π.

Describe the Riemann surface for .w=z

Question: Use the Cauchy-Riemann conditions to find out whether the functions in Problems 1.1 to 1.21 are analytic.

2z+3z+2

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free