Chapter 7: Q9P (page 384)
Find the exponential Fourier transform of the given f(x)and write f(x)as a Fourier integral.
Short Answer
The exponential Fourier transform of the given function is and f(x) as a Fourier integral is.
Chapter 7: Q9P (page 384)
Find the exponential Fourier transform of the given f(x)and write f(x)as a Fourier integral.
The exponential Fourier transform of the given function is and f(x) as a Fourier integral is.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a trigonometry formula to write the two terms as a single harmonic. Find the period and amplitude. Compare computer plots of your result and the given problem.
Repeat Problem 11:
(a) If
(b) If
The displacement (from equilibrium) of a particle executing simple harmonic motion may be eitherordepending on our choice of time origin. Show that the average of the kinetic energy of a particle of mass m(over a period of the motion) is the same for the two formulas (as it must be since both describe the same physical motion). Find the average value of the kinetic energy for thecase in two ways:
(a) By selecting the integration limits (as you may by Problem 4.1) so that a change of variable reduces the integral to thecase.
(b) By expandingby the trigonometric addition formulas and using (5.2) to write the average values.
In each case, show that a particle whose coordinate is (a) , (b)is undergoing simple harmonic motion, and find the amplitude, period, frequency, and velocity amplitude of the motion.
Find the average value of the function on the given interval. Use equation (4.8) if it applies. If an average value is zero, you may be able to decide this from a quick sketch which shows you that the areas above and below the x axis are the same.
What do you think about this solution?
We value your feedback to improve our textbook solutions.