Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the Fourier sine transform of x-12 is . Hint: Make the change of variablez=αx . The integral 0z-1/2sinzdzcan be found by computer or in tables

Short Answer

Expert verified

Thus, the required Fourier series is gα=2πα12π2

Step by step solution

01

Determine the Fourier transformation for the given function. 

Fourier sine transform of f(x) is,

gα=2π0f(x)sinαxdx=2π0x12sinαxdx

Let z=αx,dz=αdx

So, we get,

gα=2π0x12sinαxdx=2π0zα12sinzdzα=2πα120sinzzdzgα=2πα12π2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free