Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Represent each of the following functions (a) by a Fourier cosine integral; (b) by a Fourier sine integral. Hint: See the discussion just before Parseval’s theorem.

30.f(x)={1-x2,0<x<20,x>2

Short Answer

Expert verified

(a) Fourier cosine integral is fc(x)=1π01cos(2α)α2cos(αx)dα.

(b) Fourier sine integral is fs(x)=1π02αsin(2α)α2sin(αx)dα.

Step by step solution

01

Given Information.

The given function isf(x)={1-x2,0<x<20,x>2.Fourier cosine integral and Fourier sine integral is to be found out of this function.

02

Definition of Fourier integral theorem

The Fourier integral theorem says that, if a function f(x)satisfies the Dirichlet conditions on every finite interval and if |f(x)|dxis finite, then f(x)=g(α)eiαxdαandg(α)=12π-f(x)e-iαxdx.

03

Find the cosine integral

gc(α)=2π02(1x2)cos(αx)dx=2π[sin(αx)α12(xαsin(αx)+1α2cos(αx))]02=12π(1cos(2α)α2)

Thus localid="1664272783731" fc(x)=1π01cos(2α)α2cos(αx)dα.

04

Find the sine integral

gs(α)=2π02(1x2)sin(αx)dx=2π[cos(αx)α12(xαcos(αx)+1α2sin(αx))]02gs(α)=12π(2αsin(2α)2α2)

Thusfs(x)=1π02αsin(2α)α2sin(αx)dα

Therefore, Fourier cosine integral is fc(x)=1π01cos(2α)α2cos(αx)dα

And Fourier sine integral is fs(x)=1π02αsin(2α)α2sin(αx)dα.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free