Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In each of the following problems you are given a function on the interval-π<x<π.

Sketch several periods of the corresponding periodic function of period 2π . Expand the periodic function in a sine-cosine Fourier series.

f(x)={0,-π<x<0,sinx,0<x<π..

Short Answer

Expert verified

The expansion is fx=1π+12sinx-2πn=2mcos(nx)n2-1where m=1,2,3,.......

Step by step solution

01

Given

The given function is fx=0,-π<x<0sinx,0<x<π.

The given points are x=0,±π2,±π,±2π.

02

Definition of Fourier series and L’Hospital’s rule

The Fourier series for the function f(x) :

f(x)=a02+n=1(ancosnx+bnsinnx)a0=1π-πxf(x)dxa0=1π-πxf(x)cosnxdxa0=1π-πxf(x)cosnxdx

Iff(x)is an even function:

bn=0f(x)=a02+n=1ancosnx

Iff(x)is an odd function:

role="math" localid="1660884845189" a0=an=0f(x)=n=1bnsinnx

L'hospital's rule states that if limxcf(x)=limxcg(x)=0or±,g(x)0for all xinlwithxc andlimxcf'(x)g'(x)exists, thenlimxcf(x)g(x)=limxcf'(x)g'(x).

03

Sketch the function

The sketch for the given function is shown below.

In the sketch the given function is shifted to the left (blue line) by ττ2.

04

Determine the type of function

New function is gx=cosx,-π2<x<π20,x-π,-π2π2,π.

The function is an even function bn=0.

05

Find the Coefficients and the convergence points

Coefficients of a0:

a0=1π-ππfxdx=1π-π2π2cosxdx=1πsinx-π2π2=2π

Coefficients of an:

an=1π-ππfxcosnxdx=1π-π2π2cosxcosnxdx=1π-π2π2einx+e-inx2eix+e-ix2dx=1π-π2π2einx+e-inxeix+e-ixdx

Calculate further as shown below.

an=14π-π2π2eixn+1+eixn-1+eix1-n+e-ixn+1dx=14πeixn+1in+1+eixn-1in+1+eix1-nin+1+e-ixn+1in+1-π2π2=14πeixn+1in+1-e-ixn+1in+1+eixn-1in+1-eix1-nin+1-π2π2=12πsinxn+1n+1+sinxn-1n-1-π2π2forn=1,limx1sinxn-1n-1.

06

Use L’Hospital’s rule

limn1cosxnx-x1=limx1cosxnx-x=xcosx-x=xcos(0Use L'Hospital's rule as follows:

Now, a1=lim1112ττsinxn-1n-1-π2π2=12ττx-π2π2=12.

And, an=12πsinxn+1n-1+sinxn-1n+1n2-1-π2π2=x.

=12πsin(nx)cosx+sinxcos(nx)n-1+sin(nx)cosx+sinxcos(nx)n+1n2-1-π2π2=1πnsinnxcosx-sinxcos(nx)n2-1-π2π2=-2πcosnπ2n2-1

Then, gx=1π+12cosx-2πn=1cosnπ2cos(nx)n2-1.

For fx, fx=gx-ττ/2.

07

Find the expansion of the function

The expansion of the given function is given below.

fx=1π+12cosx-π/2-2πn=1cosnπ2cosnx-π/2n2-1=1π+12sinx-2πn=1cosnπ2cosnxcosnπ2+sinnxsinnπ2n2-1=1π+12sinx-2πn=1cosnxcos2nπ2+sinnxcosnπ2sinnπ2n2-1=1π+12sinx-2πn=1cosnxcos2nπ2+12sinnxsinnπn2-1

So, =1π+12sinx-2πn=1cosnxcos2nπ2n2-1where sinnττ=0.

fx=1π+12sinx-2πn=2mcosnxn2-1 where m=1,2,3,...........

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free