Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluatee(a+ib)xdxand take real and imaginary parts to show that:

eaxsinbxdx=eax(asinbx-bcodbx)a2+b2

Short Answer

Expert verified

The result of the evaluation of

ea+ibxdx=eaxacosbx+bsinbx+ieaxasinbx+bcosbxa2+b2and the function eaxsinbxdx=eaxasinbx-bcosbxa2+b2has been showed.

Step by step solution

01

Given Information.

The given expression is ea+ibxdx.

02

Meaning of rectangular form.

Representing the complex number in rectangular form means writing the given complex number in the form of x+iy, in which x is the real part and y is the imaginary part.

03

Step 3: Evaluate.

The given question is ea+ibxdx.

ea+ibxdx=ea+ibxa+ibea+ibxdx=eax.eibxa+ibea+ibxdx=eaxcosbx+isinbxa+ib

Multiply the numerator and the denominator with the complex conjugate of

ea+ibxdx=eaxcosbx+isinbxa+ib.a-iba-ibea+ibxdx=eaxacosbx+aisinbx-ibcosbx+bsinbxa2+b2ea+ibxdx=eaxacosbx+aisinbx)+ieax(asinbx-bcosbxa2+b2

04

Step 4: Simplify.

ea+ibxdx=eax.eibxdxea+ibxdx=eaxcosbx+isinbxdxea+ibxdx=eaxcosbxdx+ieaxsinbxdx......2

Using equation (1) and (2).

eaxcosbxdx+ieaxsinbxdx=eaxacosbx+bsinbx+ieaxasinbx-bcosbxa2+b2

Equate the imaginary part on both sides.


role="math" localid="1658729614203" eaxsinbxdx=eaxasinbx-bcosbxa2+b2

Therefore, the evaluation of eaxsinbxdx=eaxasinbx+bcosbx+ieaxasinbx-bcosbxa2+b2and the function eaxsinbxdx=eaxasinbx-bcosbxa2+b2has been showed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free