Chapter 6: Problem 14
14\. Prove that the electromagnetic energy tensor satisfies the following two identities: $$ M_{\mu}^{\mu}=0, \quad M_{\sigma}^{\mu} M_{v}^{a}=\left(I \varepsilon_{0} / 2\right)^{2} \delta_{v}^{\mu}, $$ where \(I^{2}=\left(c^{2} b^{2}-e^{2}\right)^{2}+4 c^{2}(e \cdot b)^{2}\). [Hint: It may be easiest to establish the second identity in a particular frame, e.g. if \(I \neq 0\), in one in which e is parallel to b. (We regard the vanishing of e or b as a particular case of this.) For the case \(I=0\), appeal to continuity. \(]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.