Chapter 6: Problem 10
Obtain the field (41.5), (41.6) of a uniformly moving charge \(q\left[=\left(4 \pi \varepsilon_{0}\right)^{-1} Q\right]\) by the following alternative method: Assume that the field in the rest frame \(S^{\prime}\) of the charge is given by $$ \mathbf{e}^{\prime}=\left(Q / r^{\prime 3}\right)\left(x^{\prime}, y^{\prime}, z^{\prime}\right), \quad \mathbf{b}^{\prime}=0, \quad r^{\prime 2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2} $$ then transform this field to the usual second frame \(\mathrm{S}\) at \(t=0\). [Hint: obtain \(\mathbf{b}=\mathbf{u} \times \mathbf{e} / c^{2}\) from \((39.2)\); from the inverse of \((39.1)\) obtain \(\mathbf{e}=\left(Q \gamma / r^{3}\right)(x, y, z) ;\) finally use (41.7). ]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.