Chapter 6: Problem 1
(i) A particle of rest mass \(m\) and charge \(q\) is injected at velocity \(\mathbf{u}\) into a constant pure magnetic field \(\mathbf{b}\) at right angles to the field lines. Use the Lorentz force law \((38.16)\) to establish that the particle will trace out a circle of radius \(m u \gamma(u) / q b\) with period \(2 \pi m \gamma(u) / q b\). [It was the y-factor in the period that necessitated the development of synchrotrons from cyclotrons, at whose energies the \(\gamma\) was still negligible.] (ii) If the particle is injected into the field with the same velocity but at an angle \(\theta \neq \pi / 2\) to the field lines, prove that the path is a helix, of smaller radius, but that the period for one complete cycle is the same as before.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.