Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the wave function in Example 2.2, find the expectation value of H, at time t=0 ,the “old fashioned way:

H=Ψ(x,0)H^Ψ(x,0)dx.

Compare the result obtained in Example 2.3. Note: BecauseH is independent of time, there is no loss of generality in usingt=0

Short Answer

Expert verified

The expectation value ofHisrole="math" localid="1655393475453" 52ma2 which is same as Example .

Step by step solution

01

Definition of wave function

A wave function is a function that describes the probability of a particle's quantum state as a function of position, momentum, time or spin. The variable Ψ is widely used to represent wave functions.

02

Finding the value of  H^Ψ(x,0)

The expectation value of Hat the time t=0will be evaluated.

The value ofH^Ψ(x,0) have to be found for the calculation of expectation value of H:

H^Ψ(x,0)=22m2x2[Ax(ax]=A22mx(a2x)=A2m

03

Finding the value of H

The expectation value of H can be calculated as,

H=Ψx,0H^Ψ(x,0)dx=A22m0ax(ax)dx=A22m(ax22x33)|0a=A22m(a22a33)=30a52ma36A==52ma2

Thus, the expectation value of His 52ma2which is same as Example 2.3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a) Compute x, p, x2, p2, for the states ψ0andψ1 , by explicit integration. Comment; In this and other problems involving the harmonic oscillator it simplifies matters if you introduce the variable ξxand the constant α(π)14.

b) Check the uncertainty principle for these states.

c) Compute T(the average kinetic energy) and V (the average potential energy) for these states. (No new integration allowed). Is their sum what you would expect?

Show that E must be exceed the minimum value of V(x) ,for every normalizable solution to the time independent Schrodinger equation what is classical analog to this statement?

d2Ψdx2=2mh2[V(x)E]Ψ;

IfE<Vmin thenΨ and its second derivative always have the same sign. Is it normalized?

Delta functions live under integral signs, and two expressions (D1xandD2x)involving delta functions are said to be equal if

-+f(x)D1(x)dx=-+f(x)D2(x)dxfor every (ordinary) function f(x).

(a) Show that

δ(cx)=1|c|δ(x)(2.145)

where c is a real constant. (Be sure to check the case where c is negative.)

(b) Let θ(x) be the step function:

θ(x){1,x>00,x>0(2.146).

(In the rare case where it actually matters, we define θ(0) to be 1/2.) Show that dθldx=δ

Find the transmission coefficient for the potential in problem 2.27

If two (or more) distinct44solutions to the (time-independent) Schrödinger equation have the same energy E . These states are said to be degenerate. For example, the free particle states are doubly degenerate-one solution representing motion to the right. And the other motion to the left. But we have never encountered normalizable degenerate solutions, and this is no accident. Prove the following theorem: In one dimension45 there are no degenerate bound states. Hint: Suppose there are two solutions, ψ1and ψ2with the same energy E. Multiply the Schrödinger equation for ψ1by ψ2and the Schrödinger equation for ψ2by ψ1and subtract, to show that ψ2dψ1/dx-ψ2dψ1/dxis a constant. Use the fact that for normalizable solutions ψ0at±to demonstrate that this constant is in fact zero.Conclude that ψ2s a multiple of ψ1and hence that the two solutions are not distinct.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free