Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that E must be exceed the minimum value of V(x) ,for every normalizable solution to the time independent Schrodinger equation what is classical analog to this statement?

d2Ψdx2=2mh2[V(x)E]Ψ;

IfE<Vmin thenΨ and its second derivative always have the same sign. Is it normalized?

Short Answer

Expert verified

If E<Vmin, then the wave function will diverge from zero as x goes to ±, and therefore the wave function is not normalized, so to get a normalized wave function E>Vmin must be true.

Step by step solution

01

Step 1: Definition of Schrodinger equation 

A differential equation that describes matter in quantum mechanics in terms of the wave-like properties of particles in a field.

Its answer is related to a particle's probability density in space and time.

02

Identification of the equation is normalized or not

Write equation (2.5).

d2ψdx2=2m2[V(x)E]ψ

If the energy E was less than the minimum value of V(x), then [VminE]>0, which is mean that the time-independent wave-function ψ and its second derivative will have the same sign everywhere, and therefore ψwill diverge from zero as x±, which is mean ψ is not normalized;

So that E must be greater than Vmin to have a normalized value of ψ.

The classical analog for this is the total energy of some particle (i.e., kinetic energy plus potential energy) where it must be greater than the minimum value of the potential energy just like the energyEand the potential energyV(x)in quantum mechanics

Thus, when E<Vmin, then the wave function will diverge from zero as x goes to ±, and therefore the wave function is not normalized, so to get a normalized wave function E>Vmin must be true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the potential V(x)=-h2a2msech2(ax)where a is a positive constant, and "sech" stands for the hyperbolic secant

(a) Graph this potential.

(b) Check that this potential has the ground state

ψ0(x)and find its energy. Normalize and sketch its graph.

(C)Show that the function ψ2(x)=A(ik-atanhaxik+a)ekx

(Where k=2mEihas usual) solves the Schrödinger equation for any (positive) energy E. Sincetanhz-1asas This represents, then, a wave coming in from the left with no accompanying reflected wave (i.e., no term . What is the asymptotic formψk(x) of at large positive x? What are R and T, for this potential? Comment: This is a famous example of a reflectionless potential-every incident particle, regardless of its energy, passes right through.

A particle of mass m is in the potential

V(x)={,(x<0)-32h2ma2,(0xa)0,(x>a)

How many bound states are there?

In the highest-energy bound state, what is the probability that the particle would be found outside the well (x>a)? Answer: 0.542, so even though it is “bound” by the well, it is more likely to be found outside than inside!

A particle in the infinite square well has as its initial wave function an even mixture of the first two stationary states:

Ψ(x,0)=A[ψ1(x)+ψ2(x)]

You can look up the series

116+136+156+=π6960

and

114+134+154+=π496

in math tables. under "Sums of Reciprocal Powers" or "Riemann Zeta Function."

(a) Normalize Ψ(x,0) . (That is, find A. This is very easy, if you exploit the orthonormality of ψ1and ψ2 Recall that, having ψnormalized at , t=0 , you can rest assured that is stays normalized—if you doubt this, check it explicitly after doing part(b).

(b) Find Ψ(x,t)and |Ψ(x,t)|2Express the latter as a sinusoidal function of time. To simplify the result, let ωπ22ma2

c)Compute x . Notice that it oscillates in time. What is the angular frequency of the oscillation? What is the amplitude of the oscillation?(If your amplitude is greater than a2 , go directly to jail.

(d) Compute p

(e) If you measured the energy of this particle, what values might you get, and what is the probability of getting each of them? Find the expectation value ofH.How does it compare with E1 and E2

-consider the “step” potential:

v(x)={0,ifx0,V0,ifx>0,

a.Calculate the reflection coefficient, for the case E < V0, and comment on the answer.

b. Calculate the reflection coefficient, for the case E >V0.

c. For potential such as this, which does not go back to zero to the right of the barrier, the transmission coefficient is not simply F2A2(with A the incident amplitude and F the transmitted amplitude), because the transmitted wave travels at a different speed . Show thatT=E-V0V0F2A2,for E >V0. What is T for E < V0?

d. For E > V0, calculate the transmission coefficient for the step potential, and check that T + R = 1.


Delta functions live under integral signs, and two expressions (D1xandD2x)involving delta functions are said to be equal if

-+f(x)D1(x)dx=-+f(x)D2(x)dxfor every (ordinary) function f(x).

(a) Show that

δ(cx)=1|c|δ(x)(2.145)

where c is a real constant. (Be sure to check the case where c is negative.)

(b) Let θ(x) be the step function:

θ(x){1,x>00,x>0(2.146).

(In the rare case where it actually matters, we define θ(0) to be 1/2.) Show that dθldx=δ

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free