Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A particle is in the ground state of the harmonic oscillator with classical frequency ω, when suddenly the spring constant quadruples, so ω'=2ω, without initially changing the wave function (of course, Ψwill now evolve differently, because the Hamiltonian has changed). What is the probability that a measurement of the energy would still return the value ω2? What is the probability of getting ω?

Short Answer

Expert verified

The probability of getting 12ωis zero, and the probability of ωis 0.943.

Step by step solution

01

The given values of the question

The particle is in ground state and its classical frequency is ω. when the spring becomes entangled in a never-ending tangle ω'=2ω.

02

The probabilities of ℏω2 and ℏω

The new allowed energies are En'=(n+12)ω'=2(n+12)ω=ω,3ω,5ω,....

so the probability of getting12ω is zero.

The probability of getting ωis P0=c02, where c0=Ψ(x,0)ψ0'dxwith

Substitute the known values inP0=c02

Thus, the probability of ωis 0.943.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A free particle has the initial wave function
ψ(x,0)=Ae-a|x|,

where A and a are positive real constants.

(a)Normalizeψ(x,0).

(b) Findϕ(k).

(c) Construct ψ(x,t),in the form of an integral.

(d) Discuss the limiting cases very large, and a very small.

a) Construct ψ2(x)

b) Sketch ψ0,ψ1andψ2

c) Check the orthogonality ofψ0ψ1ψ2 by explicit integration.

Hint:If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.

The transfer matrix. The S- matrix (Problem 2.52) tells you the outgoing amplitudes (B and F)in terms of the incoming amplitudes (A and G) -Equation 2.175For some purposes it is more convenient to work with the transfer matrix, M, which gives you the amplitudes to the right of the potential (F and G)in terms of those to the left (A and b):

(FG)=(M11M12M21M22)(AB)[2.178]

(a) Find the four elements of the M-matrix, in terms of the elements of theS-matrix, and vice versa. ExpressRI,TI,RrandTr(Equations 2.176and 2.177) in terms of elements of the M-matrix.,

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.23 ). Show that the M-matrix for the combination is the product of the twoM-matrices for each section separately: M=M2M1[2.179]

(This obviously generalizes to any number of pieces, and accounts for the usefulness of the M-matrix.)

FIGURE : A potential consisting of two isolated pieces (Problem 2.53 ).

(c) Construct the -matrix for scattering from a single delta-function potential at point V(x)=-αδ(x-a) :

(d) By the method of part , find the M-matrix for scattering from the double delta functionV(x)=-α[δ(x+a)+δ(X-a)] .What is the transmission coefficient for this potential?

Delta functions live under integral signs, and two expressions (D1xandD2x)involving delta functions are said to be equal if

-+f(x)D1(x)dx=-+f(x)D2(x)dxfor every (ordinary) function f(x).

(a) Show that

δ(cx)=1|c|δ(x)(2.145)

where c is a real constant. (Be sure to check the case where c is negative.)

(b) Let θ(x) be the step function:

θ(x){1,x>00,x>0(2.146).

(In the rare case where it actually matters, we define θ(0) to be 1/2.) Show that dθldx=δ

Consider the potential V(x)=-h2a2msech2(ax)where a is a positive constant, and "sech" stands for the hyperbolic secant

(a) Graph this potential.

(b) Check that this potential has the ground state

ψ0(x)and find its energy. Normalize and sketch its graph.

(C)Show that the function ψ2(x)=A(ik-atanhaxik+a)ekx

(Where k=2mEihas usual) solves the Schrödinger equation for any (positive) energy E. Sincetanhz-1asas This represents, then, a wave coming in from the left with no accompanying reflected wave (i.e., no term . What is the asymptotic formψk(x) of at large positive x? What are R and T, for this potential? Comment: This is a famous example of a reflectionless potential-every incident particle, regardless of its energy, passes right through.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free