Chapter 6: Q32P (page 287)
Suppose the Hamiltonian H, for a particular quantum system, is a function of some parameter let and be the eigen values and
Eigen functions of. The Feynman-Hellmann theoremstates that
(Assuming either that is nondegenerate, or-if degenerate-that the 's are the "good" linear combinations of the degenerate Eigen functions).
(a) Prove the Feynman-Hellmann theorem. Hint: Use Equation 6.9.
(b) Apply it to the one-dimensional harmonic oscillator,(i)using (this yields a formula for the expectation value of V), (II)using (this yields (T)),and (iii)using (this yields a relation between (T)and (V)). Compare your answers to Problem 2.12, and the virial theorem predictions (Problem 3.31).
Short Answer
(a) The proved that the provided equation is correct
(b) (i)
(ii)
(iii)