Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Analyze the Zeeman effect for the n=3states of hydrogen, in the weak, strong, and intermediate field regimes. Construct a table of energies (analogous to Table 6.2), plot them as functions of the external field (as in Figure 6.12), and check that the intermediate-field results reduce properly in the two limiting cases.

Short Answer

Expert verified

Energies in intermediate field are as follows,

ϵ1=E39γ+β

ϵ2=E33γ+2β

ϵ3=E3γ+3β

ϵ4=E36γ+β2+9γ2+βγ+β24

ϵ5=E36γ+β29γ2+βγ+β24

ϵ6=E32γ+32β+γ2+35+β24

ϵ7=E32γ+32βγ2+35+β24

ϵ8=E32γ+β2+γ2+15βγ+β24

.ϵ9=E32γ+β2γ2+15βγ+β24

Other nine energies can be obtained by changing the sign ofβ .Forβ<<γ weak field limit is obtained and forβ>γ strong field limit is obtained.

Step by step solution

01

Given. Step 2: Determination of the Weak field

For weak field, from Equation 6.67.

E3j=13.6eV9[1+α29(3j+1/234)]E3j=13.6eV9[1+α23(1j+1/214)]

gj=1+j(j+1)l(l+1)+342j(j+1)

EZ1=μBgjBextmj

It is known thatl=0, j=12, mj=±12, and gj=2. Substitute these values.

E=E3,1/2+EZ1=13.6eV9[1+α23(114)]±μBBext=13.6eV9[1+α24]±μBBext

It is known that l=1, j=12or32. Substitute these values.

Forj=12,mj=±12,

g1/2=1+12322+3421232=23

E=13.6eV9[1+α24]±13μBBext

Forj=32,mj=±12,±32,

g3/2=1+32522+3423252=43

E=13.6eV9[1+α23(1214)]±μBBext{4312,mj=±124332,mj=±32=13.6eV9[1+α212]±μBBext{23,mj=±122,mj=±32

It is known thatl=2,j=32or52. Substitute these values.

For j=32, mj=±12,±32

g3/2=1+32526+3423252=45

E=13.6eV9[1+α212]±μBBext{4512,mj=±124532,mj=±32=13.6eV9[1+α212]±μBBext{25,mj=±1265,mj=±32

For j=52, mj=±12,±32,±52

g5/2=1+52726+3425272=65

E=13.6eV9[1+α23(1314)]±μBBext{6512,mj=±126532,mj=±326552,mj=±52=13.6eV9[1+α236]±μBBext{35,mj=±1295,mj=±323,mj=±52

02

Step 3: Determination of energies in weak field

Energies in weak field from lowest state to highest are determined as follows,

For,l=0,j=1/2,mj=1/2

E=13.6eV9[1+α24]μBBext

For,l=0,j=1/2,mj=+1/2

E=13.6eV9[1+α24]+μBBext

For,l=1,j=1/2,mj=1/2

E=13.6eV9[1+α24]13μBBext

For,l=1,j=1/2,mj=+1/2

E=13.6eV9[1+α24]+13μBBext

For,l=1,j=3/2,mj=3/2

E=13.6eV9[1+α212]2μBBext

For l=1,j=3/2,mj=1/2,

E=13.6eV9[1+α212]23μBBext

For,l=1,j=3/2,mj=+1/2

E=13.6eV9[1+α212]+23μBBext

For,l=1,j=3/2,mj=+3/2

E=13.6eV9[1+α212]+2μBBext

For ,l=2,j=3/2,mj=3/2

E=13.6eV9[1+α212]65μBBext

For,l=2,j=3/2,mj=1/2

E=13.6eV9[1+α212]25μBBext

For,l=2,j=3/2,mj=+1/2

E=13.6eV9[1+α212]+25μBBext

For,l=2,j=3/2,mj=+3/2

E=13.6eV9[1+α212]+65μBBext

For,l=2,j=5/2,mj=5/2

E=13.6eV9[1+α236]3μBBext

For,l=2,j=5/2,mj=3/2

E=13.6eV9[1+α236]95μBBext

For,l=2,j=5/2,mj=1/2

E=13.6eV9[1+α236]35μBBext

For,l=2,j=5/2,mj=+1/2

E=13.6eV9[1+α236]+35μBBext

For,l=2,j=5/2,mj=+3/2

E=13.6eV9[1+α236]+95μBBext

For,l=2,j=5/2,mj=+5/2

E=13.6eV9[1+α236]+3μBBext

03

Determination of the Strong field 

For Strong field,the total energy is for n=3.

E=13.6eVn2+μBBext(ml+2ms)+13.6eVn3α2[34nl(l+1)mlmsl(l+1)(l+12)]=13.6eV9{1+α23[l(l+1)mlmsl(l+1)(l+12)14]}+μBBext(ml+2ms)

Forl=0,ml=0,ms=1/2,

E=13.6eV9{1+α24}μBBext

Forl=0,ml=0,ms=+1/2,

E=13.6eV9{1+α24}+μBBext

Forl=1,ml=1,ms=1/2,

E=13.6eV9{1+α23[1214]}2μBBext=13.6eV9{1+α212}2μBBext

Forl=1,ml=1,ms=+1/2,

E=13.6eV9{1+α23[5614]}=13.6eV9{1+7α236}

Forl=1,ml=0,ms=1/2,

E=13.6eV9{1+α23[2314]}μBBext=13.6eV9{1+5α236}μBBext

Forl=1,ml=0,ms=+1/2,

E=13.6eV9{1+α23[2314]}+μBBext=13.6eV9{1+5α236}+μBBext

Forl=1,ml=+1,ms=1/2,

E=13.6eV9{1+α23[5614]}=13.6eV9{1+7α236}

Forl=1,ml=+1,ms=+1/2,

E=13.6eV9{1+α23[1214]}+2μBBext=13.6eV9{1+α212}+2μBBext

Forl=2,ml=2,ms=1/2,

E=13.6eV9{1+α23[1314]}3μBBext=13.6eV9{1+α212}3μBBext

Forl=2,ml=2,ms=+1/2,

E=13.6eV9{1+α23[71514]}μBBext=13.6eV9{1+13α2180}μBBext

Forl=2,ml=1,ms=1/2,

E=13.6eV9{1+α23[113014]}2μBBext=13.6eV9{1+7α2180}2μBBext

Forl=2,ml=1,ms=+1/2,

E=13.6eV9{1+α23[133014]}=13.6eV9{1+11α2180}

Forl=2,ml=0,ms=1/2,

E=13.6eV9{1+α23[2514]}μBBext=13.6eV9{1+α220}μBBext

Forl=2,ml=0,ms=+1/2,

E=13.6eV9{1+α23[2514]}+μBBext=13.6eV9{1+α220}+μBBext

Forl=2,ml=+1,ms=1/2,

E=13.6eV9{1+α23[133014]}=13.6eV9{1+11α2180}

Forl=2,ml=+1,ms=+1/2,

E=13.6eV9{1+α23[113014]}+2μBBext=13.6eV9{1+7α2180}2μBBext

Forl=2,ml=+2,ms=1/2,

E=13.6eV9{1+α23[71514]}+μBBext=13.6eV9{1+13α2180}+μBBext

Forl=2,ml=+2,ms=+1/2,

E=13.6eV9{1+α23[1314]}+3μBBext=13.6eV9{1+α212}+3μBBext

04

Step 5:Determination of the Intermediate field

For Intermediate fieldthe fine structure energy is given as follows,

Efs1=(En)22mc2(34nj+1/2)

For En=(E19),

Efs1=(E19)22mc2(312j+1/2)=3E12162mc2(14j+1/2)=E1254mc2(14j+1/2)=E1α2108(14j+1/2)=3γ(14j+1/2)

It is known that γ=13.6eV324α2.

Forj=1/2,Efs1=9γ, forj=3/2,and Efs1=3γforj=5/2,Efs1=γ. These are diagonal elements inW matrixZeeman Write the expression for the Hamiltonian.

HZ'=1β(LZ+2SZ)

Here, β=μBBext.

05

Step 6:Determination of non-zero blocks of matrix

Non-zero blocks ofWmatrix are as follows,

9γβ,9γ+β,3γ2β,3γ+2β,(3γ23β23β23β9γ13β),(3γ+23β23β23β9γ+13β)

06

Step 7:Use ofClebsch-Gordan coefficients

For,l=2

Use Clebsch-Gordan coefficients (in this casej=5/2orj=3/2).

|5252=|22|1212

5/2,5/2HZ'5/2,5/2=5252|β(LZ+2SZ)|5252A=β22|1212|(LZ+2SZ)|22|1212=β22|1212|(21)|22|1212=3β

For ,j=3/2

|5232=45|21|1212+15|22|1212

5/2,3/2HZ'5/2,3/2=5232|β(LZ+2SZ)|5232=β5232|(LZ+2SZ){45|21|1212+15|22|1212}=β5232|{(11)45|21|1212+(2+1)15|22|1212}=β{4521|1212|+1522|1212|}{(2)45|21|121215|22|1212}=β(8515)=95β

Forj=1/2,

.

|5212=35|20|1212+25|21|1212

role="math" localid="1659005505710" 5/2,1/2HZ'5/2,1/2=35β|5212=35|21|121225|20|1212

Forj=1/2,

5/2,1/2HZ'5/2,1/2=35β|5232=15|22|121215|21|12125/2,3/2HZ'5/2,3/2=95β

|5252=|22|12125/2,5/2HZ'5/2,5/2=3β

07

Step 8:Determination of diagonal elements of matrix -W

The Diagonal elements of matrixWforj=5/2are as follows,

γ+3β,γ3β,γ95β,γ+95β,γ35β,γ+35β

For,j=32,

|3232=15|21|121245|22|12123/2,3/2HZ'3/2,3/2=65β

|3212=25|20|121235|21|12123/2,1/2HZ'3/2,1/2=25β

|3212=35|21|121225|20|12123/2,1/2HZ'3/2,1/2=25β

|3232=45|21|121215|22|12123/2,3/2HZ'3/2,3/2=65β

The Diagonal elements of matrixWforj=3/2are as follows,

3γ+65β,3γ65β,3γ+25β,3γ25β

08

Step 10:Determination of non-zero off-diagonal elements

The non-zero off-diagonal elements are as follows,

5/2,3/2HZ'3/2,3/2=3/2,3/2HZ'5/2,3/2=β{4521|1212|+1522|1212|}(LZ+2SZ){15|21|121245|22|1212}=β{4521|1212|+1522|1212|}{(11)15|21|1212(2+1)45|22|1212}=β{4521|1212|+1522|1212|}{(2)15|21|1212+45|22|1212}=β(45+25)=25β

For j=12,

5/2,1/2HZ'3/2,1/2=3/2,1/2HZ'5/2,1/2=65β

5/2,1/2HZ'3/2,1/2=3/2,1/2HZ'5/2,1/2=65β

5/2,3/2HZ'3/2,3/2=3/2,3/2HZ'5/2,3/2=25β

Non-zero off-diagonal elements of matrixW are as follows,

25β,65β

09

Step 11:Determination of Matrix  −W

MatrixW(which has18×18elements) has six1×1 blocksand six2×2 blocks:

9γβ,9γ+β,3γ2β,3γ+2β,γ+3β,γ3β

(3γ23β23β23β9γ13β),(3γ+23β23β23β9γ+13β)

(γ+95β25β25β3γ+65β),(γ95β25β25β3γ65β)(γ35β65β65β3γ25β),(γ+35β65β65β3γ+25β)

10

Step 12:Determination of Eigen values

Eigen values of2×2block is need to be determined. It is required to calculate for3of them as eigen values for other three will be obtained by changing the sign of.

|3γ23βλ23β23β9γ13βλ|=0λ2+λ(β12γ)+γ(27γ7β)=0λ=6γβ2±9γ2+βγ+β24

|γ95βλ25β25β3γ65βλ|=0λ2+λ(3β4γ)+3γ2335βγ+2β2=0λ=2γ32β±γ2+35+β24

|γ35βλ65β65β3γ25βλ|=0λ2+λ(β4γ)+γ(3γ115β)=0λ=2γβ2±γ2+15βγ+β24

11

Step 13:Determination of energies in intermediate field

Finally, energies in intermediate field are as follows,

ϵ1=E39γ+β

ϵ2=E33γ+2β

ϵ3=E3γ+3β

ϵ4=E36γ+β2+9γ2+βγ+β24

ϵ5=E36γ+β29γ2+βγ+β24

ϵ6=E32γ+32β+γ2+35+β24

ϵ7=E32γ+32βγ2+35+β24

ϵ8=E32γ+β2+γ2+15βγ+β24

ϵ9=E32γ+β2γ2+15βγ+β24

Other nine energies can be obtained by changing the sign ofβ<<γ .For weak field limit is obtained and for strong β>γfield limit is obtained.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show thatP2is Hermitian, butP4is not, for hydrogen states withl=0. Hint: For such statesψis independent ofθandϕ, so

localid="1656070791118" p2=-2r2ddr(r2ddr)

(Equation 4.13). Using integration by parts, show that

localid="1656069411605" <fp2g>=-4πh2(r2fdgdr-r2gdfdr)0+<p2fg>

Check that the boundary term vanishes forψn00, which goes like

ψn00~1π(na)3/2exp(-r/na)

near the origin. Now do the same forp4, and show that the boundary terms do not vanish. In fact:

<ψn00p4ψm00>=84a4(n-m)(nm)5/2+<p4ψn00ψm00>

Calculate the wavelength, in centimeters, of the photon emitted under a hyperfine transition in the ground state (n=1) of deuterium. Deuterium is "heavy" hydrogen, with an extra neutron in the nucleus; the proton and neutron bind together to form a deuteron, with spin 1 and magnetic moment

μdl=gde2mdSd

he deuteron g-factor is 1.71.

Consider a particle of mass m that is free to move in a one-dimensional region of length L that closes on itself (for instance, a bead that slides frictionlessly on a circular wire of circumference L, as inProblem 2.46).

(a) Show that the stationary states can be written in the formψn(x)=1Le2πinx/L,(-L/2<x<L/2),

wheren=0,±1,±2,....and the allowed energies areEn=2mnπL2.Notice that with the exception of the ground state (n = 0 ) – are all doubly degenerate.

(b) Now suppose we introduce the perturbation,H'=-V0e-x2/a2where aLa. (This puts a little “dimple” in the potential at x = 0, as though we bent the wire slightly to make a “trap”.) Find the first-order correction to En, using Equation 6.27. Hint: To evaluate the integrals, exploit the fact that aLato extend the limits from ±L/2to±after all, H′ is essentially zero outside -a<x<a.

E±1=12Waa+Wbb±Waa-Wbb2+4Wab2(6.27).

(c) What are the “good” linear combinations ofψnandψ-n, for this problem? Show that with these states you get the first-order correction using Equation 6.9.

En'=ψn0H'ψn0(6.9).

(d) Find a hermitian operator A that fits the requirements of the theorem, and show that the simultaneous Eigenstates ofH0and A are precisely the ones you used in (c).

Two identical spin-zero bosons are placed in an infinite square well (Equation 2.19). They interact weakly with one another, via the potential

V(x1,x2)=-aV0δ(x1-x2). (2.19).

(where V0is a constant with the dimensions of energy, and a is the width of the well).

(a)First, ignoring the interaction between the particles, find the ground state and the first excited state—both the wave functions and the associated energies.

(b) Use first-order perturbation theory to estimate the effect of the particle– particle interaction on the energies of the ground state and the first excited state.

Question: In the text I asserted that the first-order corrections to an n-fold degenerate energy are the eigen values of the Wmatrix, and I justified this claim as the "natural" generalization of the case n = 2.

Prove it, by reproducing the steps in Section 6.2.1, starting with

ψ0=j=1nαjψj0

(generalizing Equation 6.17), and ending by showing that the analog to Equation6.22 can be interpreted as the eigen value equation for the matrix W.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free