Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If I=0, then j=s,mj=ms, and the "good" states are the same (nms)for weak and strong fields. DetermineEz1(from Equation) and the fine structure energies (Equation 6.67), and write down the general result for the I=O Zeeman Effect - regardless of the strength of the field. Show that the strong field formula (Equation 6.82) reproduces this result, provided that we interpret the indeterminate term in square brackets as.

Short Answer

Expert verified

The EZ1=e2mBext2msħand the fine structure energies is

E=-13.6eVn21+α2n2n-34+2msBexteħ2m

Step by step solution

01

Definition of Zeeman Effect.

In the presence of a static magnetic field, the Zeeman Effect causes a spectral line to break into numerous components.

02

Step2: Structural isomers of carboxylic acids.

Use the equation 6.72,

Ez1=e2mBext.L+2S=e2mBext2msħ

Fine structure energy (with j=1/2),

Enj=-13.6eVn21+α2n2n-34Etot=-13.6eVn21+α2n2n-34+2mSBext2m

Fine structure term is proportional to α2;

Efs1=-13.6eVn4α2n-34=13.6eVn3α234n-1

{Same as equation } with the term in square brackets set equal to 1.

Efs1=13.6eVn3α234n-II+1-mImsII+1/2I+1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Feynman-Hellmann theorem (Problem 6.32) can be used to determine the expectation values of1/rand1/r2for hydrogen.23The effective Hamiltonian for the radial wave functions is (Equation4.53)

22md2dr2+22ml(l+1)r2-e24π01r

And the eigenvalues (expressed in terms ofl)24are (Equation 4.70)

En=-me432π202h2jmax+l+12

(a) Use λ=ein the Feynman-Hellmann theorem to obtain 1/r. Check your result against Equation 6.55.

(b) Use λ=lto obtain 1/r2. Check your answer with Equation6.56.

Problem 6.6 Let the two "good" unperturbed states be

ψ±0=α±ψa0+β±ψb0

whereα±andβ±are determined (up to normalization) by Equation 6.22(orEquation6.24). Show explicitly that

(a)are orthogonal;role="math" localid="1655966589608" (ψ+0ψ-0=0);

(b) ψ+0|H'|ψ-0=0;

(c)ψ±0|H'|ψ±0=E±1,withE±1given by Equation 6.27.

Find the (lowest order) relativistic correction to the energy levels of the one-dimensional harmonic oscillator. Hint: Use the technique in Example 2.5 .

Question: Consider the Stark effect (Problem 6.36) for the states of hydrogen. There are initially nine degenerate states, ψ3/m (neglecting spin, as before), and we turn on an electric field in the direction.

(a) Construct the matrix representing the perturbing Hamiltonian. Partial answer: <300|z|310>=-36a,<310|z|320>=-33a,<31±1|z|32±1>=-(9/2)a,,

(b) Find the eigenvalues, and their degeneracies.

By appropriate modification of the hydrogen formula, determine the hyperfine splitting in the ground state of

(a) muonic hydrogen (in which a muon-same charge and g-factor as the electron, but 207times the mass-substitutes for the electron),

(b) positronium (in which a positron-same mass and g-factor as the electron, but opposite charge-substitutes for the proton), and

(c) muonium (in which an anti-muon-same mass and g-factor as a muon, but opposite charge-substitutes for the proton). Hint: Don't forget to use the reduced mass (Problem 5.1) in calculating the "Bohr radius" of these exotic "atoms." Incidentally, the answer you get for positronium (4.82×10-4eV)is quite far from the experimental value; (8.41×10-4eV)the large discrepancy is due to pair annihilation (e++e-γ+γ), which contributes an extra localid="1656057412048" (3/4)ΔE,and does not occur (of course) in ordinary hydrogen, muonic hydrogen, or muoniun.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free