Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the examples inProblem 11.24(c) and (d), calculate cm(t)to first order. Check the normalization condition:

m|cmt|2=1,

and comment on any discrepancy. Suppose you wanted to calculate the probability of remaining in the original state ψN ; would you do better to use |cNt|2,or1-mN|cmt|2 ?

Short Answer

Expert verified

The probability of remaining in the original state is

cmt=-VmN2eiEm-EN+ħω-1Em-EN+ħω+eiEm-EN-ħωt/ħ-1Em-EN-ħωmN

Step by step solution

01

Calculating  cm(t)

For example (c):

cNt=1-iħHNN't;cmt=-2iHmN'(Em-ENei(Em-EN)t/2ħsinEm-EN2ħtmN

And,

cN2=1+t2ħ2HNN'2cm2=4HmN'2Em-EN2sin2Em-EN2ħt

So,

mcm2=1+t2ħ2HNN'2+4mNHmN'Em-EN2sin2Em-EN2ħt

This is plainly greater than 1! But remember: The c’s are accurate only to first order in H'; to this order the H'2 terms do not belong. Only if terms of first order appeared in the sum would there be a genuine problem with normalization.

02

Step 2: Calculating the first order

For example (d):

cN=1-iħVNN0tcosωt'dt'=1-iħVNNsinωt'ω0t;cNt=1-iħωVNNsinωtcmt=-VmN2ei(Em-EN+ħω)t/ħ-1Em-EN+ħω+eiEm-EN-ħωt/ħEm-EN-ħωmN

So, cN2=1+VNN2ħω2sin2ωt; and in the rotating wave approximation

cm2=VmN2Em-EN+ħϖ2sin2Em-EN+ħω2ħtmN

Again, ostensiblycm2>1, but the \extra” terms are of second order in, and hence do not belong (to first order). You would do better to use1-mNcm2Schematically:

cm=a1H+a2H2+···,cm2=a12H2+2a1a2H3+····,whereascN=1+b1H+b2H2+···,cN2=1+2b1H+2b2+b12H2+···

Thus knowing cm to first order (i.e., knowing ) gets you cm2 to second order, but knowing cN to first order (i.e.b1 ) does not get you cN2 o second order (you’d also need b2. It is precisely this term that would cancel the “extra” (second-order) terms in the calculations of cm2above.. .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solve Equation 9.13 for the case of a time-independent perturbation, assumingthatandcheck that

. Comment: Ostensibly, this system oscillates between “” Doesn’t this contradict my general assertion that no transitions occur for time-independent perturbations? No, but the reason is rather subtle: In this are not, and never were, Eigen states of the Hamiltonian—a measurement of the energy never yields. In time-dependent perturbation theory we typically contemplate turning on the perturbation for a while, and then turning it off again, in order to examine the system. At the beginning, and at the end,are Eigen states of the exact Hamiltonian, and only in this context does it make sense to say that the system underwent a transition from one to the other. For the present problem, then, assume that the perturbation was turned on at time t = 0, and off again at time T —this doesn’t affect the calculations, but it allows for a more sensible interpretation of the result.

ca=-ihHabeigtcb,cb=-ihHbaeigtca …(9.13).

In Equation 9.31 assumed that the atom is so small (in comparison to the wavelength of light) that spatial variations in the field can be ignored. The true electric field would be E(r,t)=E0cos(krωt).

If the atom is centered at the origin, thenkr1 over the relevant volume,|k|=2π/λ sokr~r/λ1) and that's why we could afford to drop this term. Suppose we keep the first-order correction:

E(r,t)=E0[cos(ωt)+(kr)sin(ωt)].

The first term gives rise to the allowed (electric dipole) transitions we considered in the text; the second leads to so-called forbidden (magnetic dipole and electric quadrupole) transitions (higher powers of k.rlead to even more "forbidden" transitions, associated with higher multipole moments).

(a) Obtain the spontaneous emission rate for forbidden transitions (don't bother to average over polarization and propagation directions, though this should really be done to complete the calculation). Answer:role="math" localid="1659008133999" Rba=q2ω5πϵ0c5|a|(n^r)(k^r)|b|2.

(b) Show that for a one-dimensional oscillator the forbidden transitions go from leveln to levelrole="math" localid="1659008239387" n-2 and the transition rate (suitably averaged over n^andk^) isR=q2ω3n(n1)15πϵ0m2c5.

(Note: Hereω is the frequency of the photon, not the oscillator.) Find the ratio of the "forbidden" rate to the "allowed" rate, and comment on the terminology.

(c) Show that the2S1S transition in hydrogen is not possible even by a "forbidden" transition. (As it turns out, this is true for all the higher multipoles as well; the dominant decay is in fact by two-photon emission, and the lifetime it is about a tenth of a second

The first term in Equation 9.25 comes from the eiωt/2, and the second from e-iωt/2.. Thus dropping the first term is formally equivalent to writing H^=(V/2)e-iωt, which is to say,

cbl-ihvba0tcos(ωt')eiω0t'dt'=-iVba2h0tej(ω0+ω)t'+ej(ω0-ω)t'dt'=--iVba2hej(ω0+ω)t'-1ω0+ω+ej(ω0-ω)t'-1ω0-ω(9.25).Hba'=Vba2e-iωt,Hab'=Vab2eiωt(9.29).

(The latter is required to make the Hamiltonian matrix hermitian—or, if you prefer, to pick out the dominant term in the formula analogous to Equation 9.25 forca(t). ) Rabi noticed that if you make this so-called rotating wave approximation at the beginning of the calculation, Equation 9.13 can be solved exactly, with no need for perturbation theory, and no assumption about the strength of the field.

c.a=-ihHab'e-iω0tcb,c.b=-ihHba'e-iω0tca,

(a) Solve Equation 9.13 in the rotating wave approximation (Equation 9.29), for the usual initial conditions: ca(0)=1,cb(0)=0. Express your results (ca(t)andcb(t))in terms of the Rabi flopping frequency,

ωr=12(ω-ω0)2+(Vab/h)2 (9.30).

(b) Determine the transition probability,Pab(t), and show that it never exceeds 1. Confirm that.

ca(t)2+cb(t)2=1.

(c) Check that Pab(t)reduces to the perturbation theory result (Equation 9.28) when the perturbation is “small,” and state precisely what small means in this context, as a constraint on V.

Pab(t)=cb(t)2Vab2hsin2ω0-ωt/2ω0-ω2(9.28)

(d) At what time does the system first return to its initial state?


Calculate ca(t)andcb(t), to second order, for a time-independent perturbation in Problem 9.2. Compare your answer with the exact result.

Magnetic resonance. A spin-1/2 particle with gyromagnetic ratio γ at rest in a static magnetic fieldB0k^ precesses at the Larmor frequencyω0=γB0 (Example 4.3). Now we turn on a small transverse radiofrequency (rf) field,Brf[cos(ωt)ı^sin(ωt)j^]$, so that the total field is

role="math" localid="1659004119542" B=Brfcos(ωt)ı^Brfsin(ωt)j^+B0k^

(a) Construct the 2×2Hamiltonian matrix (Equation 4.158) for this system.

(b) If χ(t)=(a(t)b(t))is the spin state at time t, show that

a˙=i2(Ωeiωtb+ω0a):   b˙=i2(Ωeiωtaω0b)

where ΩγBrfis related to the strength of the rf field.

(c) Check that the general solution fora(t) andb(t) in terms of their initial valuesa0 andb0 is

role="math" localid="1659004637631" a(t)={a0cos(ω't/2)+iω'[a0(ω0ω)+b0Ω]sin(ω't/2)}eiωt/2b(t)={b0cos(ω't/2)+iω'[b0(ωω0)+a0Ω]sin(ω't/2)}eiωt/2

Where

ω'(ωω0)2+Ω2

(d) If the particle starts out with spin up (i.e. a0=1,b0=0,), find the probability of a transition to spin down, as a function of time. Answer:P(t)={Ω2/[(ωω0)2+Ω2]}sin2(ω't/2)

(e) Sketch the resonance curve,

role="math" localid="1659004767993" P(ω)=Ω2(ωω0)2+Ω2,

as a function of the driving frequencyω (for fixed ω0andΩ ). Note that the maximum occurs atω=ω0 Find the "full width at half maximum,"Δω

(f) Since ω0=γB0we can use the experimentally observed resonance to determine the magnetic dipole moment of the particle. In a nuclear magnetic resonance (nmr) experiment the factor of the proton is to be measured, using a static field of 10,000 gauss and an rf field of amplitude gauss. What will the resonant frequency be? (See Section for the magnetic moment of the proton.) Find the width of the resonance curve. (Give your answers in Hz.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free