Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using Egs=-79.0eV for the ground state energy of helium, calculate the ionization energy (the energy required to remove just one electron). Hint: First calculate the ground state energy of the helium ion, He+, with a single electron orbiting the nucleus; then subtract the two energies.

Short Answer

Expert verified

The first ionization energy is 24.6eV.

Step by step solution

01

Definition of the hyperfine harmonic oscillator

A harmonic oscillator is a system that experiences a restoring forceFproportionate to the displacement xwhen it is moved from its equilibrium position, where k is a positive constant.

02

The ionization energy

Subtract Helium's ground state energy from its first excited state yields the first ionization energy (energy necessary to remove one electron).

The energy of the Helium ion'sHe+ground state is equal to the energy of the first excited state.

So, calculate the ground state energy ofHe+as:

He+ is a Hydrogen like atom. It contains just one electron but two protons in its nucleus, which indicates it has only one electron.

Hydrogen atom energy,

EH=-13.6eVZ2n2

ForHydrogen ground state n = 1 , and Z = 1.

For helium, Z = 2, then the expression will be :

EHe=-13.6eV2212EHe=-54.4eV

Ground state energy for helium is:

Egs=-79.0eV

SubtractingEHe andEgs ground state energy as:

Ejoin=-54eV--79eV=24.6eV

Thus, the first ionization energy is 24.6eV.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) GeneralizeProblem 7.2, using the trial wave function

ψ(x)=A(x2+b2)n,

For arbitrary n. Partial answer: The best value of b is given by

localid="1658300238725" b2=hmω[n(4n-1)(4n-3)2(2n+1)]1/2

(b) Find the least upper bound on the first excited state of the harmonic oscillator using a trial function of the form

ψ(x)=Bx(x2+b2)n.

Partial answer: The best value of b is given by

localid="1658300555415" b2=hmω[n(4n-5)(4n-3)2(2n+1)]1/2.

(c) Notice that the bounds approach the exact energies as n →∞. Why is that? Hint: Plot the trial wave functions for n = 2 , n = 3 , and n = 4, and compare them with the true wave functions (Equations 2.59 and 2.62). To do it analytically, start with the identity

ez=limn(1+zn)nψ0(x)=(mωπh)1/4e-mω2hx2 (2.59).

ψ1(x)=A1a^+ψ0=A12hmω(-hddx+mωx)(mωπh)1/4e-mω2hx2ψ1(x)=A1(mωπh)1/42mωhxe-mω2hx2(2.62).

Find the best bound on Egsfor the delta-function potentialV(x)=-αδ(x), using a triangular trial function (Equation 7.10, only centered at the origin). This time a is an adjustable parameter.

As an explicit example of the method developed inProblem 7.15, consider an electron at rest in a uniform magnetic field B=B2kfor which the Hamiltonian is (Equation 4.158):

H=-γB (4.158).

H0=eBzmSz (7.57).

The eigenspinors, xaarelocalid="1655969802629" xb,andthecorrespondingenergies,EaandEb,aregiven in Equation 4.161. Now we turn on a perturbation, in the form of a uniform field in the x direction:

{x+,withenergyE+=-γB0ħ/2x-,withenergyE-=+-γB0ħ/2 (4.161).

H'=eBxmSx (7.58).

(a) Find the matrix elements of H′, and confirm that they have the structure of Equation 7.55. What is h?

(b) Using your result inProblem 7.15(b), find the new ground state energy, in second-order perturbation theory.

(c) Using your result inProblem 7.15(c), find the variation principle bound on the ground state energy.

If the photon had a nonzero mass mγ0, the Coulomb potential would be replaced by the Yukawa potential,

V(r)=-e24π0e-μrr (8.73).

Whereμ=mγc/ . With a trial wave function of your own devising, estimate the binding energy of a “hydrogen” atom with this potential. Assumeμa1 , and give your answer correct to order(μa)2 .

Although the Schrödinger equation for helium itself cannot be solved exactly, there exist “helium-like” systems that do admit exact solutions. A simple example is “rubber-band helium,” in which the Coulomb forces are replaced by Hooke’s law forces:

H=-ħ22m(12+22)+12mω2|r1-r1|2(8.78).

(a) Show that the change of variables from

r1,r2,tor1,r2,tou12(r1+r2),v12(r1+r2) (8.79).

turns the Hamiltonian into two independent three-dimensional harmonic oscillators:

H=[-ħ2mu2+12mω2u2]+[-ħ2mu2+121-λmω2u2](8.80)

(b) What is the exact ground state energy for this system?

(c) If we didn’t know the exact solution, we might be inclined to apply the method of Section 7.2 to the Hamiltonian in its original form (Equation 7.78). Do so (but don’t bother with shielding). How does your result compare with the exact answer? Answer:(H)=3ħω(1-λ/4)a.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free