Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the best bound on Egsfor the one-dimensional harmonic oscillator using a trial wave function of the form role="math" localid="1656044636654" ψ(x)=Ax2+b2.,where A is determined by normalization and b is an adjustable parameter.

Short Answer

Expert verified

It is bigger than the expected value of the ground state energy of the harmonic oscillator=0.707ω

Step by step solution

01

Define the formula for trial wave function

The trial wave function has the form:

ψ(x)=Ax2+b2

The harmonic oscillator potential has the form

V(x)=122x2

02

Step 2: Define the normalization of A.

ψ(x)ψ(x)=-ψ*(x)ψ(x)dx=-A2x2+b22dx=1

We know that x=btanθ

role="math" localid="1656045400533" dx=bsec2θdθ-A2(x2+b2)2dx=20A2(x2+b2)2dx2A2b30cos2θdθ=2A2π4b3=1A=2b3π

03

Step 3: Now find the value of T.

The expectation value of kinetic energy.

T=-22mA2-1(x2+b2)d2dx21(x2+b2)dxd2dx21(x2+b2)=8x2(x2+b2)3-2(x2+b2)2=6x2-2b2(x2+b2)3T=-22m2A206x2-2b2(x2+b2)4dx=24mb2

Now find the value of V expectation potential energy.

V=1222A20x2(x2+b2)2dx=22b3ππ4b=2b22

04

 Step 4: Now find the value of Hamiltonian expectation.

Expectation value H=T+V

=24mb2+2b22

Now minimize H

role="math" localid="1656046908842" Hb=-22mb3+2b=0b=22m2ω214H24m122m2ω2122222m2ω212min=22ω=0.707ω

Which is bigger than the expected value of the ground state energy of the harmonic oscillator=0.707ω

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Prove the following corollary to the variational principle: If ψψgs=0thenáHñEfe whereEfe is the energy of the first excited state. Comment: If we can find a trial function that is orthogonal to the exact ground state, we can get an upper bound on the first excited state. In general, it's difficult to be sure that is orthogonal toψgsi since (presumably) we don't know the latter. However, if the potentialV(x) is an even function of x, then the ground state is likewise even, and hence any odd trial function will automatically meet the condition for the corollary.

(b) Find the best bound on the first excited state of the one-dimensional harmonic oscillator using the trial functionψ(x)=Axe-bx2

(a) Use a trial wave function of the form

ψ(x)={Acos(πx/a),if(a/2<x<a/2)0otherwise

to obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. What is the "best" value ofa? CompareHminwith the exact energy. Note: This trial function has a "kink" in it (a discontinuous derivative) at±a/2; do you need to take account of this, as I did in Example 7.3?

(b) Useψ(x)=Bsin(πx/a)on the interval(a,a)to obtain a bound on the first excited state. Compare the exact answer.

Quantum dots. Consider a particle constrained to move in two dimensions in the cross-shaped region.The “arms” of the cross continue out to infinity. The potential is zero within the cross, and infinite in the shaded areas outside. Surprisingly, this configuration admits a positive-energy bound state

(a) Show that the lowest energy that can propagate off to infinity is

Ethreshold=π2h28ma2

any solution with energy less than that has to be a bound state. Hint: Go way out one arm (say xa), and solve the Schrödinger equation by separation of variables; if the wave function propagates out to infinity, the dependence on x must take the formexp(ikxx)withkx>0

(b) Now use the variation principle to show that the ground state has energy less than Ethreshold. Use the following trial wave function (suggested by Jim Mc Tavish):

ψ(x,y)=A{cos(πx/2a)+cos(πy/2a)e-αxaandyacos(πx/2a)e-αy/axaandy>acos(πy/2a)e-αy/ax.aandya0elsewhere

Normalize it to determine A, and calculate the expectation value of H.
Answer:

<H>=h2ma2[π28-1-(α/4)1+(8/π2)+(1/2α)]

Now minimize with respect to α, and show that the result is less thanEthreshold. Hint: Take full advantage of the symmetry of the problem— you only need to integrate over 1/8 of the open region, since the other seven integrals will be the same. Note however that whereas the trial wave function is continuous, its derivatives are not—there are “roof-lines” at the joins, and you will need to exploit the technique of Example 8.3.

Find the best bound on Egsfor the delta-function potentialV(x)=-αδ(x), using a triangular trial function (Equation 7.10, only centered at the origin). This time a is an adjustable parameter.

Suppose you’re given a two-level quantum system whose (time-independent) Hamiltonian H0admits just two Eigen states, Ψa (with energy Ea ), and Ψb(with energy Eb ). They are orthogonal, normalized, and non-degenerate (assume Ea is the smaller of the two energies). Now we turn on a perturbation H′, with the following matrix elements:

Ψa|H'|Ψa=Ψb|H'|Ψb=0;Ψa|H'|Ψb=Ψb|H'|Ψa (7.74).

where h is some specified constant.

(a) Find the exact Eigen values of the perturbed Hamiltonian.

(b) Estimate the energies of the perturbed system using second-order perturbation theory.

(c) Estimate the ground state energy of the perturbed system using the variation principle, with a trial function of the form

Ψ=(cosϕ)Ψa+(sinϕ)ψb (7.75).

where ϕ is an adjustable parameter. Note: Writing the linear combination in this way is just a neat way to guarantee that ψ is normalized.

(d) Compare your answers to (a), (b), and (c). Why is the variational principle so accurate, in this case?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free