Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

As an explicit example of the method developed inProblem 7.15, consider an electron at rest in a uniform magnetic field B=B2kfor which the Hamiltonian is (Equation 4.158):

H=-γB (4.158).

H0=eBzmSz (7.57).

The eigenspinors, xaarelocalid="1655969802629" xb,andthecorrespondingenergies,EaandEb,aregiven in Equation 4.161. Now we turn on a perturbation, in the form of a uniform field in the x direction:

{x+,withenergyE+=-γB0ħ/2x-,withenergyE-=+-γB0ħ/2 (4.161).

H'=eBxmSx (7.58).

(a) Find the matrix elements of H′, and confirm that they have the structure of Equation 7.55. What is h?

(b) Using your result inProblem 7.15(b), find the new ground state energy, in second-order perturbation theory.

(c) Using your result inProblem 7.15(c), find the variation principle bound on the ground state energy.

Short Answer

Expert verified

(a)<xa|H'|xb>=eBxħ2m(01)(0110)(10)=eBxħ2m(01)(01)=eBxħ2m.soh=eBxħ2m.

(b) EgsEa-h2(Eb-Ea)=eħ2m(Bz+Bx22Bz).

(c) Egs=-12(eBzħm)2+4(eBzħm)2=-eħ2mB2z+B2z.

Step by step solution

01

(a)Finding the matrix elements of H'

For the electron, . (Eq. 4.161).

For consistency with Problem 7.15,

soxbx+=10,xa=x-=01,Eb=Ex=eBzħ2m,Ea=E-=-eBzħ2m.

x+,withenergyE+=-γB0ħ/2x-,withenergyE-=+γB0ħ/2

|xaH'xa=ebxmħ201011001=ebxħ2m0110.xbH'xb=ebxħ2m10011010=0,.xbH'xb=ebxħ2m10011001=ebxħ2m101010.xbH'xb=ebxħ2m01011010=ebxħ2m0101=ebxħ2m.andtheconditionsofProblem7.15aremet.

02

(b)Finding the new ground state energy

From Problem 7.15(b),

EgsEa-h2EbEa=-eBxħ2m-eBxħ/2m2(eBxħ/m)=-eħ2mBz+Bx22Bz.

03

(c)Finding the variation principle bound

From Problem 7.15(c),

Egs=12Ea+Ea-Eb-Ea2+4h2,(itsactuallytheexactgroundstate).Egs=12eBzħm2+4eBzħm2=-eħ2mBz2+Bx2.whichwasobviousfromthestart,sincethesquarerootissimplythemagnitudeofthetotalfield).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the best bound on Egsfor the one-dimensional harmonic oscillator using a trial wave function of the form role="math" localid="1656044636654" ψ(x)=Ax2+b2.,where A is determined by normalization and b is an adjustable parameter.

Find the best bound on Egsfor the delta-function potentialV(x)=-αδ(x), using a triangular trial function (Equation 7.10, only centered at the origin). This time a is an adjustable parameter.

If the photon had a nonzero mass mγ0, the Coulomb potential would be replaced by the Yukawa potential,

V(r)=-e24π0e-μrr (8.73).

Whereμ=mγc/ . With a trial wave function of your own devising, estimate the binding energy of a “hydrogen” atom with this potential. Assumeμa1 , and give your answer correct to order(μa)2 .

Although the Schrödinger equation for helium itself cannot be solved exactly, there exist “helium-like” systems that do admit exact solutions. A simple example is “rubber-band helium,” in which the Coulomb forces are replaced by Hooke’s law forces:

H=-ħ22m(12+22)+12mω2|r1-r1|2(8.78).

(a) Show that the change of variables from

r1,r2,tor1,r2,tou12(r1+r2),v12(r1+r2) (8.79).

turns the Hamiltonian into two independent three-dimensional harmonic oscillators:

H=[-ħ2mu2+12mω2u2]+[-ħ2mu2+121-λmω2u2](8.80)

(b) What is the exact ground state energy for this system?

(c) If we didn’t know the exact solution, we might be inclined to apply the method of Section 7.2 to the Hamiltonian in its original form (Equation 7.78). Do so (but don’t bother with shielding). How does your result compare with the exact answer? Answer:(H)=3ħω(1-λ/4)a.

InProblem 7.7we found that the trial wave function with shielding (Equation 7.27), which worked well for helium, is inadequate to confirm the existence of a bound state for the negative hydrogen ion.

ψ1(r1,r2)z3πa3e-z(r1+r2)/a (7.27)

Chandrasekhar used a trial wave function of the form

ψ(r1,r2)A[ψ1(r1)ψ2(r2)+ψ2(r1)ψ1(r2)] (7.62).

Where

ψ1(r)z13πa3e-z1/a,ψ1(r)z23πa3e-z2/a,(7.63)

In effect, he allowed two different shielding factors, suggesting that one electron is relatively close to the nucleus, and the other is farther out. (Because electrons are identical particles, the spatial wave function must be symmetries with respect to interchange. The spin state—which is irrelevant to the calculation—is evidently anti symmetric.) Show that by astute choice of the adjustable parameters Z1and Z2you can get<H>less than -13.6.

Answer: :<H>=E1x6+y6(-x8+2x7+12x6y2-12x5y2-18x3y4+118xy6-12y8).

Wherexz1+z2.y2z1z2Chandrasekhar usedZ1=1.039

(Since this is larger than 1, the motivating interpretation as an effective nuclear charge cannot be sustained, but never mindit’s still an acceptable trial wave function) andZ2=0.283.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free