Chapter 4: Q61P (page 199)
[Refer to Problem 4.59 for background.] In classical electrodynamics the potentials Aandare not uniquely determined; 47 the physical quantities are the fields, E and B.
(a) Show that the potentials
(whereis an arbitrary real function of position and time). yield the same fields asand A. Equation 4.210 is called a gauge transformation, and the theory is said to be gauge invariant.
(b) In quantum mechanics the potentials play a more direct role, and it is of interest to know whether the theory remains gauge invariant. Show that
satisfies the Schrödinger equation (4.205) with the gauge-transformed potentialsand, Sincediffers fromonly by a phase factor, it represents the same physical state, 48and the theory is gauge invariant (see Section 10.2.3for further discussion).
Short Answer
(a)The potentials results in the same fields.
(b)The equation satisfies the Schrödinger equation withgauge invariant.