Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Work out the Clebsch-Gordan coefficients for the case s1=1/2,s2=anything. Hint: You're looking for the coefficients A and Bin

|sm=A|1212|s2(m-12)+B|12(-12)|s2(m+12)

such that|sm is an eigenstate of . Use the method of Equations 4.179 through 4.182. If you can't figure out whatSx(2) (for instance) does to|s2m2 , refer back to Equation 4.136 and the line before Equation 4.147. Answer:

;role="math" localid="1658209512756" A=s2+12±m2s2+1;B=±s2+12±m2s2+1

where, the signs are determined bys=s2±1/2 .

(b) Check this general result against three or four entries in Table 4.8.

Short Answer

Expert verified

(a) The Clebsch-Gordan coefficients are, A=s2+12±m2s2+1, and B=±s2+12±m2s2+1

(b) The result is checked for few entries.

Step by step solution

01

Introduction to few formulae

Before solving the problem, some formulae should be known,

S±|sm=s(s+1)-m(m±1)|sm±1

Here, S±is the raising and lowering operators with an eigenstate|s

S2|sm=2s(s+1)|sm

Here,S2is the spin angular momentum operator squared with an eigenvalue2s(s+1)and an eigenstate|sm.

localid="1658209816175" Sz|sm=m|sm

Here,Szis the quantized z -component of spin angular momentum with an eigenvaluemand an eigenstae|sm.

s is the spin quantum number which is always a positive integer while m is the magnetic spin quantum number which has always a half-integer value.

A chemical bond is an atom-to-atom attraction. This attraction can be explained by differences in the behaviour of atoms' outermost or valence electrons.

02

(a) Determination of the Clebsch-Gordan coefficients for the case s1=1/2,s2= anything.

Solve the issue by creating the following relationship between the spin angular momentum operator's x -component, Sx , the spin angular momentum operator's y -component, Sy , and the spin raising and lowering operators,S± ,

Sx=12S++S-Sxsm>=12S+sm>+S-sm>=h2ss+1-mm+1sm+1>ss+1-mm-1sm-1>Sy=12iS++S-Sysm>=12S+sm>+S-sm>=h2iss+1-mm+1sm+1>ss+1-mm-1sm-1>

Add angular momenta.

S=S1+S2S2=S1+S2.S1+S2=S12+S22+2S1.S2=S12+S22+2Sx1Sx2+Sy1Sy2+Sz1Sz2=S2sm>=S12+S22+2Sx1Sx2+Sy1Sy2+Sz1Sz2sm>=S12+S22+2Sx1Sx2+Sy1Sy2+Sz1Sz2A1212>s2m-12>+B1212>s2m+12>

Distribute the operators over the states.

S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('9f895d4bd17c841...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('9f895d4bd17c841...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('9f895d4bd17c841...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>

=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>

Act with the operators on the states in the above expression.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) If you measured the component of spin angular momentum along the x direction, at time t, what is the probability that you would get +h/2?

(b) Same question, but for the ycomponent.

(c) Same, for the z component.

(a)Derive Equation 4.131 from Equation 4.130. Hint: Use a test function; otherwise you're likely to drop some terms.

(b)Derive Equation 4.132 from Equations 4.129 and 4.131 .Hint : Use Equation 4.112.

a) Check that the spin matrices (Equations 4.145 and 4.147) obey the fundamental commutation relations for angular momentum, Equation 4.134.

Sz=h2(100-1)(4.145).Sx=h2(0110),sy=h2(0-ii0)(4.147).[Sx,Sy]=ihSz,[Sy,Sz]=ihSx,[Sz,Sx]=ihSy(4.134).(b)ShowthatthePaulispinmatrices(Equation4.148)satisfytheproductruleσx(0110),σy(0-ii0),σz(100-1)(4.148).σjσk=δjk+io'IjklσI,(4.153).

Wheretheindicesstandforx,y,orz,ando'jklistheLevi-Civitasymbol:+1ifjkl=123,231,or2=312;-1ifjkl=132,213,or321;otherwise.

In classical electrodynamics the force on a particle of charge q

moving with velocity through electric and magnetic fields E and B is given

by the Lorentz force law:F=q(E+v×B)

This force cannot be expressed as the gradient of a scalar potential energy

function, and therefore the Schrödinger equation in its original form (Equation 1.1)

cannot accommodate it. But in the more sophisticated form ihψt=Hψ

there is no problem; the classical Hamiltonian isH=12m(p-qA)2+where A

is the vector potential(B=×A)and ψis the scalar potential (E=-ψ-A/t),

so the Schrödinger

equation (making the canonical substitutionp(h/i))becomesihψt=[12mhi-qA2+]ψ

(a) Show that d<r>dt=1m<(p-qA)>

(b) As always (see Equation ) we identifyd<r>/dtwith<v>. Show that

md<v>dt=q<E>+q2m<(p×B-B×p)>-q2m<(A×B)>

(c) In particular, if the fields and are uniform over the volume of the wave packet,

show thatmd<v>dt=q(E+<V>×B)so the expectation value of (v)moves

according to the Lorentz force law, as we would expect from Ehrenfest's theorem.

Construct the spin matrices(Sx,Sy andSz) , for a particle of spin 1. Hint: How many eigenstates ofSz are there? Determine the action of Sz, S+, and Son each of these states. Follow the procedure used in the text for spin 1/2.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free