Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a) Check that the spin matrices (Equations 4.145 and 4.147) obey the fundamental commutation relations for angular momentum, Equation 4.134.

Sz=h2(100-1)(4.145).Sx=h2(0110),sy=h2(0-ii0)(4.147).[Sx,Sy]=ihSz,[Sy,Sz]=ihSx,[Sz,Sx]=ihSy(4.134).(b)ShowthatthePaulispinmatrices(Equation4.148)satisfytheproductruleσx(0110),σy(0-ii0),σz(100-1)(4.148).σjσk=δjk+io'IjklσI,(4.153).

Wheretheindicesstandforx,y,orz,ando'jklistheLevi-Civitasymbol:+1ifjkl=123,231,or2=312;-1ifjkl=132,213,or321;otherwise.

Short Answer

Expert verified

(a)Sx,Sy=ihSz-(b)σjσk=δjk+iojkl'σI-I

Step by step solution

01

(a) Checking the spin matrices obey the fundamental commutation relations for angular momentum.

The spin matrices are

Sz=h2100-1Sx=h20110,Sy=h20-ii0Sx,Sy=SxSy-SySx=h2201100-ii0-0-ii00110.=h24i00-i--i00i=h242i00-2i=ihh22100-1Sx,Sy=ihSz

02

(b) Showing the Pauli spin matrices satisfies the product rule.

σxσx=1001=1=σyσy=σzσz,Soσjσj=1forj=x,y,orz.σxσy=i00-i=iσz;σyσz=0ii0=iσx;σzσx=01-10=iσy.σyσx=-i00-i=iσz;σzσy=0-i-i0=-iσx;σxσz=0-110=-iσy.

Equation 4.153 packages all this in a single formula.

σjσk=δjk+iIojklσI.'

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A hydrogen atom starts out in the following linear combination of the stationary states n=2, l=1, m=1 and n=2, l=1, m=-1.

ψ(r,0)=12(ψ211+ψ21-1)

(a) Constructψ(r,t)Simplify it as much as you can.

(b) Find the expectation value of the potential energy,<V>. (Does it depend on t?) Give both the formula and the actual number, in electron volts.

Determine the commutator of S2withSZ(1)(whereSS(1)+S(2)) Generalize your result to show that

[S2,S1]=2Ih(S1×S2)

Comment: Because Sz(1)does not commute with S2, we cannot hope to find states that are simultaneous eigenvectors of both. In order to form eigenstates ofS2weneed linear combinations of eigenstates ofSz(1). This is precisely what the Clebsch-Gordan coefficients (in Equation 4.185) do for us, On the other hand, it follows by obvious inference from Equation 4.187that the sumrole="math" localid="1655980965321" S(1)+S(2)does commute withdata-custom-editor="chemistry" S2, which is a special case of something we already knew (see Equation 4.103).

Work out the spin matrices for arbitrary spin , generalizing spin (Equations 4.145 and 4.147), spin 1 (Problem 4.31), and spin (Problem 4.52). Answer:

Sz=(s0000s-10000s-200000-s)Sx=2(0bs0000bs0bs-10000bs-10bs-20000bs-200000000b-s+10000b-s+10)Sy=2(0-ibs0000ibs0-ibs-10000-ibs-10-ibs-20000-ibs-200000000-ibs+10000-ibs+10)

where,bj(s+j)(s+1-j)

(a) Find〈r〉and〈r²〉for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius.

(b) Find〈x〉and (x2)for an electron in the ground state of hydrogen.

Hint: This requires no new integration—note that r2=x2+y2+z2,and exploit the symmetry of the ground state.

(c) Find〈x²〉in the state n=2,l=1,m=1. Hint: this state is not symmetrical in x, y, z. Usex=rsinθcosπx=rsinθcosϕ

[Refer to Problem 4.59 for background.] In classical electrodynamics the potentials Aandφare not uniquely determined; 47 the physical quantities are the fields, E and B.

(a) Show that the potentials

φ'φ-Λt,A'A+Λ

(whereis an arbitrary real function of position and time). yield the same fields asφand A. Equation 4.210 is called a gauge transformation, and the theory is said to be gauge invariant.

(b) In quantum mechanics the potentials play a more direct role, and it is of interest to know whether the theory remains gauge invariant. Show that

Ψ'eiqΛ/Ψ

satisfies the Schrödinger equation (4.205) with the gauge-transformed potentialsφ'andA', SinceΨ'differs fromψonly by a phase factor, it represents the same physical state, 48and the theory is gauge invariant (see Section 10.2.3for further discussion).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free