Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the most probable value of r, in the ground state of hydrogen? (The answer is not zero!) Hint: First you must figure out the probability that the electron would be found between r and r + dr.

Short Answer

Expert verified

The most probable value of r is in the ground state of hydrogen.

Step by step solution

01

Expression of probability

The expression for the probability is given as follows,

P=|ψ|24πr2dr=4a3e-2r/ar2dr=p(r)dr

Here, the value of is , 4a3r2e-2r/aand the wave function in the ground state of hydrogen,ψ=1πa3e-r/a.

02

Determination of the most probable value of r

Take the derivative of p(r)=4a3r2e-2r/awith respect to r .

role="math" localid="1657772519231" dprdr=ddr4a3r2e-2r/a=4a32re-2r/a+r22ae-2r/a=8ra3e-2r/a1-ra

Equate the obtained value to zero.

dprdr=08ra3e-2r/a1-ra=0

For the value of r equate role="math" localid="1657772026855" 1-rato zero.

1-ra=0r=a

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Work out the normalization factor for the spherical harmonics, as follows. From Section 4.1.2we know that

Ylm=BlmeimϕPlmcosθ

the problem is to determine the factor (which I quoted, but did not derive, in Equation 4.32). Use Equations 4.120, 4.121, and 4.130to obtain a recursion

relation giving Blm+1 in terms of Blm. Solve it by induction on to get Blm up to an overall constant Cl, .Finally, use the result of Problem 4.22 to fix the constant. You may find the following formula for the derivative of an associated Legendre function useful:

1-x2dPlmdx=1-x2Plm+1-mxPlm [4.199]

What is the probability that an electron in the ground state of hydrogen will be found inside the nucleus?

  1. First calculate the exact answer, assuming the wave function is correct all the way down tor=0. Let b be the radius of the nucleus.
  2. Expand your result as a power series in the small numbera=2bla, and show that the lowest-order term is the cubic:P(4l3)(bla)3. This should be a suitable approximation, provided thatba(which it is).
  3. Alternatively, we might assume thatψ(r)is essentially constant over the (tiny) volume of the nucleus, so thatP(4l3)πb3lψ(0)l2.Check that you get the same answer this way.
  4. Useb10-15manda05×10-10mto get a numerical estimate forP. Roughly speaking, this represents the fraction of its time that the electron spends inside the nucleus:"

(a) Work out the Clebsch-Gordan coefficients for the case s1=1/2,s2=anything. Hint: You're looking for the coefficients A and Bin

|sm=A|1212|s2(m-12)+B|12(-12)|s2(m+12)

such that|sm is an eigenstate of . Use the method of Equations 4.179 through 4.182. If you can't figure out whatSx(2) (for instance) does to|s2m2 , refer back to Equation 4.136 and the line before Equation 4.147. Answer:

;role="math" localid="1658209512756" A=s2+12±m2s2+1;B=±s2+12±m2s2+1

where, the signs are determined bys=s2±1/2 .

(b) Check this general result against three or four entries in Table 4.8.

A particle of mass m is placed in a finite spherical well:

V(r)={-V0,ra;0,r>a;

Find the ground state, by solving the radial equation withl=0. Show that there is no bound state if V0a2<π2k2/8m.

(a) Prove the three-dimensional virial theorem

2T=rV

(for stationary states). Hint: Refer to problem 3.31,

(b) Apply the virial theorem to the case of hydrogen, and show that

T=-En;V=2En

(c) Apply the virial theorem to the three-dimensional harmonic oscillator and show that in this case

T=V=En/2

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free